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Ivo Babuška ∗ Uday Banerjee † John E. Osborn ‡

Abstract

In the last few years meshless methods for numerically solving partial
differential equations came into the focus of interest, especially in the
engineering community. This class of methods was essentially stimulated
by difficulties related to mesh generation. Mesh generation is delicate in
many situations, e.g., when the domain has complicated geometry; when
the mesh changes with time, as in crack propagation, and remeshing is
required at each time step; when a Lagrangian formulation is employed,
especially with non-linear PDE’s. In addition, a need to have flexibility
in the selection of approximating functions (e.g., the flexibility to use
non-polynomial approximating functions), played a significant role in the
development of meshless methods. There are many recent papers, and two
books, on meshless methods; most of them are of engineering character,
without any mathematical analysis.

In this paper we address meshless methods and the closely related
generalized finite element methods for solving linear elliptic equations,
using variational principles. We give a unified mathematical theory with
proofs, briefly address implementational aspects, present illustrative nu-
merical examples, and provide a list of reference to the current literature.

The aim of the paper is to provide a survey of a part of this new field,
with emphasis on mathematics. We present proofs of essential theorems
because we feel these proofs are essential for understanding the mathe-
matical aspects of meshless methods, which has approximation theory as
a major ingredient. As always, any new field is stimulated by and related
to older ideas. This will be visible in our paper.
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1 Introduction

a. A Brief Historical Review of the Numerical Solution of Partial Differential
Equations.

The numerical solution of partial differential equations has been of central
importance for many years. Significant progress has been made in this area,
especially in the last 30 years; this progress is directly related to the develop-
ments in computer technology. Methods such as, for example, the finite Element
Method, are used in all fields of application.
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Although significant progress has been made, numerical methods for the
solution of differential equations are still often based on heuristic ideas, and
verified by numerical experiments. Mathematical analysis is often shallow, and
fails to fully address important issues that arise in the application of the methods
to important problems in engineering and science.

There are three classical families of numerical methods for solving PDEs:

1. Finite Difference Methods

2. Finite Volume Methods

3. Finite Element Methods

These three families have two common, basic features:

1. They employ a mesh;

2. They use local approximation by polynomials.

We discuss each of these features in turn.
Mesh generation is often very expensive—especially in human cost. This is

for several reasons for this cost:

· The domain of the underlying problem can have very complex geometry.

· The domain of the problem may change with time, which requires remesh-
ing at each time step, as for example in the problem of crack propagation
or when Lagrangian coordinates are used.

· Adaptive procedures require change of mesh during computation.

Although large progress has been made in the theory and practice of mesh
generation, the construction of the mesh is still a very delicate component of
the numerical solution of differential equations. For this reason there is an
interest in the development of methods that eliminate or reduce the need for a
mesh.

Although polynomials have outstanding approximation properties, there are
situations in which they are not effective. We mention problems whose solutions
are not smooth in the sense that they may not have several bounded derivatives.
For such problems, there are sometimes other approximating functions, which we
will refer to as special, that are effective. The classical methods are not flexible
in this regard: they do not use these special non polynomial approximating
functions. There is thus an interest in developing and analyzing methods that
can flexibly use these special approximation functions.

This created the need to develop methods that address both of these issues—
the elimination, completely or partially, of the need for mesh; and the effective
use of special (non polynomial) special approximating functions. The inspiration
for such methods came mainly from two sources.

The first of these sources is the class of classical particle methods that arise
in physical simulation in connection with the Boltzmann Equation or with fluid
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dynamics. Particle methods attempt to describe the motion of the atoms or
their averages (or their density) in Lagrangian Coordinates (see [39], [40], [65],
[66], [68], [69], for example).

The other source is the idea of interpolation in the context of the general
Variational Methods (of Galerkin type). With these methods one has a finite
dimensional space, the trial space, the method selects an approximation from
this space, and, under certain general conditions, it is known that the error in the
approximation is no larger than a constant times the error in best approximation
by functions in the trial space. Thus the quality of the method is determined
by the approximation property of the trial space. It is thus natural to try to
find a trial space that has good approximation properties. This property relates
directly to interpolation by the approximating functions. For functions in one
dimension this was a classical issue in numerical analysis, and starting around
1950 was studied in higher dimension and for an arbitrary distribution of points.
It was recognized that the construction of trial spaces could be based on the
idea of interpolation.

b. Meshless Methods.

Let us now make the discussion of Variational Methods more precise. We
consider an elliptic PDE, which has the variational or weak form,

u ∈ H1; B(u, v) = F(v), for all v ∈ H2, (1.1)

where H1,H2 are two Hilbert spaces, B(u, v) is a bounded bilinear form on
H1 × H2, and F(v) is a continuous linear functional on H2. Under certain
general condition (the inf-sup or BB condition; see [5],[11]), the solution u is
characterized by (1.1). We are interested in approximating u. Toward that
end, we assume we have two finite dimensional space M1 ⊂ H1,M2 ⊂ H2 that
satisfy the discrete inf-sup condition (see [11]). The approximate solution uM1

is characterized by

uM1 ∈ M1; B(uM1 , v) = F(v), for all v ∈ M2. (1.2)

As a consequence of the fact that M1 and M2 satisfy the discrete inf-sup con-
dition, we know that the approximation uM1 is quasi-optimal, i.e.,

‖u− uM1‖H1 ≤ C inf
χ∈M1

‖u− χ‖H1 . (1.3)

We note that there are delicate problems related to the discrete inf-sup
condition when the spaces M1 and M2 are different; as, e.g., in the case of
mixed methods. In [3] different spaces are used (without mathematical analysis
of the discrete inf-sup condition).

We thus see that the quality of the approximation, i.e., the error ‖u−uM1‖H1

is mainly determined by the approximation property of the trial space M1, i.e.,
by

E1 = inf
χ∈M1

‖u− χ‖H1 .
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It is thus natural to select the trial space M1 so that E1 is small. To do this
effectively one should use whatever information is available on the solution u.
Note that with a general variational method, as we have formulated it, there is
no mention of a mesh. Of course, one may use a mesh to construct a good trial
space; that, in fact, is exactly what is done with a usual finite element method.
For example, the trial space is the space of piecewise linear functions over a
mesh.

Meshless Methods, however, either avoid the use of a mesh, or use a mesh
only minimally, for example, only for the numerical integration. The Petrov-
Galerkin method given by (1.2) is a meshless method if the construction of M1

and M2 either does not require a mesh or requires a mesh only minimally. Thus,
in designing Meshless Methods within the framework of variational methods, we
have two general goals:

1. The construction of trial spaces M1 that effectively approximate the so-
lution, and the construction of test spaces M2 ensuring inf-sup (stability)
condition.

If the solution has special features, e.g., if it is not smooth, we should
have the flexibility to use special approximating functions.

2. The minimizing of the need for a mesh.

In meshless methods, there is sometime a mesh in the background,
used for numerical integration, but one may not need a mesh gener-
ator.

We note that there are meshless methods that are not of the type given by (1.2),
e.g., methods based on collocation, but the construction of approximating space
follows the guidelines of the construction of M1 as mentioned before.

The approximating (trial) spaces, M1, can be the spans of specific approxi-
mating functions (shape functions), with either global or local supports. Polyno-
mials and radial functions are examples of approximating functions with global
supports. See [63] for a discussion of the use of polynomials and [27], [74] for a
discussion of the use of radial functions. Another type of approximating func-
tions is related to interpolation and data fitting procedures. For a survey of
various approaches we refer to [3], [31], [37], [38], [41], [53], [54], [61], and [77].
Typical finite element approximating functions and spline functions have local
supports. In [16] shape functions that are effective for the approximation of
solutions of elliptic equations with rough coefficient were identified and ana-
lyzed; the idea in [16] was extended and developed in [18]. The approximating
functions used in [16] and [17] can be characterized as solutions of particular
homogeneous differential equations. In one dimension, L-splines – a general-
ization of splines, satisfy a differential equation and are used as approximating
functions ; see, e.g. [87]. Principles for the selection of shape function were
addresses in [12].
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We note that in the engineering literature many names are used for methods
that differ only in the construction of shape functions, or in their implemen-
tation; see, e.g., [30] and others ([84]). For a survey of results on Meshless
Methods we refer to [15], [22], [34], [42], [56], [57], and [76].

One of the major problems of meshless methods is the imposition of bound-
ary conditions, especially the Dirichlet boundary conditions. It is well known
that if the underlying problem is a Dirichlet BVP, the essential boundary con-
dition is addressed with a method such as the penalty method or the method of
Lagrange multipliers. On the other hand, the boundary condition of a Neumann
Problem is natural and doesn’t need to be explicitly imposed in the variational
formulation. In both the situations, a simple uniform mesh on a rectangle con-
taining the domain can be used; the mesh need not conform to the boundary
and a mesh generator is not needed. These ideas are classical and have been
extensively analyzed (for example, see [11]). These ideas of imposing boundary
conditions can be used in the context of meshless methods and this approach
was also mentioned in [56]. The boundary of the domain does come into play
in the construction of the stiffness matrix, but a mesh generator is not needed.
This approach was generalized and used together with the ideas in [16], [17],
and [83] in solving problems with very complex geometries; see, e.g., [82].

We mention finally a meshless method—The Generalized Finite Element
Method (GFEM)—that attempts to simultaneously achieve the two goals of
variationally formulated meshless methods. With this method one begins with
a Partition of Unity. Construction of a partition of unity is a relatively simple
task. It can be done by various means. One is to use a simple mesh, for example,
a uniform mesh, and use the associated hat functions as the partition of unity.
We could also use ideas from various interpolation procedures, e.g. the Shepard
Method. It is essential that the construction can, but is not required to, utilize
the geometry of the domain. The partition of unity on the domain is obtained
by restriction. The partition of unity functions typically have compact supports
with small diameters.

Then we multiply the partition of unity functions by functions that are
defined separately and independently on the supports of the partition functions.
In this way we create shape functions that belong to H1(Ω), and can be used in
the variational method. We thereby obtain a large flexibility in the construction
of shape functions, and the associated trial spaces. This flexibility can be used to
construct approximations that utilize the available information, the character of
a singularity, or a boundary layer, e.g., on the approximated function (solution).
Hence the method achieves the goals mentioned above.

We do face three serious difficulties in the implementation of the GFEM.
First there is the problem of numerical integrations when the areas over which
we integrate are not simple triangles, simplicies, etc., as with the usual FEM. We
note, however, that the process is completely parallelizable. A second difficulty
is the treatment of essential boundary conditions. The third issue concerns
the system of linear equations. It may be singular, and thus certain classical
methods, such as multigrid, may not be applicable. These difficulties can be,
and have been, overcome in some implementations, so it is clear that the GFEM
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shows a definite advantage over the classical FEM in certain situations. We
mention problems with complex geometry, crack propagation, and analysis of
mulit-site local damage.

Of course, any new method should be compared with previously developed
methods, and the class of problems for which the new method is superior should
be identified. Theoretical and practical experience (see [15], [56], [83]) is pro-
gressing in this direction. Meshless Methods in various forms, e.g., within the
framework of collocation or variational methods, are now the subject of many
papers and (engineering) books, which mainly focus on practical aspects without
serious theoretical analysis.

This paper focuses on ideas and theoretical results. Some are adjustments
of old ideas and results. Some results are based on papers that are submitted
or in the final stage of preparation. Although we focus on the theory, we have
attempted to address theoretical issues that illuminate practical issues. We will
show that the results presented here are natural generalizations of the classical
FEM, which is a special case of some of the methods presented here. This paper
addresses only problems related to linear PDEs.

Various relevant and typical references are provided. The reference list is not
comprehensive, although, together with the citations in the references provide,
in our opinion, a very reasonable description of the current state of the art for
meshless methods.

c. The Scope of this Paper.

The short Section 2 defines the model problem, a linear elliptic boundary
value problem. Section 3.1 presents approximation results when the particles
are uniformly distributed. The presented results were obtained using the Fourier
Transform. Section 3.2 presents an alternate proof of the approximation results
that can be generalized to the case of non-uniformly distributed particles. Sec-
tion 3.3 discusses approximation for arbitrarily distributed particles. Section
4 discusses the construction of shape functions, and presents some results on
interpolation and on the asymptotic form of the error. Section 5 addresses the
question of superconvergence. Section 6 discusses the Generalized Finite Ele-
ment Method. Section 7 discusses the application of the approximation results
developed in Sections 3, and discusses the treatment of Dirichlet boundary con-
ditions. Section 8 explains some implementational aspects. Section 9 reports
some numerical examples obtained by the GFEM, when the domain is very
complex. Finally, Section 10 presents additional results and challenges.

2 The Model Problem

For concreteness and simplicity we will address the weak solution of the model
problem

−∆u + u = f(x), on Ω ⊂ Rn (2.1)

and
∂u

∂n
= 0 on ∂Ω (2.2)
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or
u = 0 on ∂Ω, (2.3)

where f ∈ L2(Ω) is given. We will assume that Ω is a Lipschitz domain; addi-
tional assumptions on ∂Ω will given as needed.

The weak solution u0 ∈ H1(Ω) (H1
0 (Ω), respectively) satisfies

B(u0, v) = F(v), for all v ∈ H1(Ω) (v ∈ H1
0 (Ω), respectively), (2.4)

where

B(u, v) ≡
∫

Ω

(∇u · ∇v + uv) dx and F(v) ≡
∫

Ω

fv dx. (2.5)

The energy norm of u0 is defined by

‖u0‖E ≡ B(u0, u0)1/2 = ‖u0‖H1(Ω). (2.6)

We will write H instead of H1(Ω) or H1
0 (Ω) if no misunderstanding can occur.

Let S ⊂ H be a finite dimensional subspace, called the approximation space.
Then the Galerkin approximation, uS ∈ S, to u0 is determined by

B̃(uS , v) = F(v), for all v ∈ S, (2.7)

where B̃ is either B or a perturbation of B. If B̃ = B, it is immediate that

‖u0 − uS‖H1(Ω) = inf
χ∈S

‖u0 − χ‖H1(Ω). (2.8)

Hence, the main problem is the approximation of u0 by functions in S.

Remark 2.1 The Finite Element Method (FEM) is the Galerkin Method where
S is the span of functions with small supports. For the history of the FEM, see
[9] and the reference therein.

Remark 2.2 The classical Ritz method uses spaces of polynomials on Ω for
the approximation spaces; see, e.g., [63].

As mentioned above, the Finite Element Method uses basis functions with
small supports, e.g., “hill” functions. The theory of approximation with general
hill functions with translation invariant supports was developed in 1970 in [4]
using the Fourier Transform. The results in [4] were applied to the numercial
solution of PDE in [5]. A very similar theory, also based on the Fourier Trans-
form, was later developed in [80] and [81]; see also [55]. Later, hill functions
were, in another context, called Particle Functions (see [39]). In the 1990s, hill
functions began to be used in the framework of meshless methods. For a broad
survey of meshless methods see [56]. A survey of the approximation properties
of radial hill functions is given in [27].

In this paper we will survey basic meshless approximation results and their
use in the framework of Galerkin Methods.
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3 Approximation by Local Functions in Rn; the
h-version Analysis

As mentioned in Section 2, we are interested in the approximation of functions
by particle shape functions. We first consider uniformly distributed particles,
and then general—non-uniformly distributed—particles.

3.1 Uniformly Distributed Particles and Associated Par-
ticle Shape Functions

Let
Zn ≡ {j = (j1, . . . , jn) : j1, . . . , jn integers}

be the integer lattice, and, for j = (j1, · · · , jn) ∈ Zn and 0 < h ≤ 1, let

xh
j = (j1h, . . . , jnh) = hj.

The points xh
j are called uniformly distributed particles. When considering such

families of particles, we often construct associated shape functions as follows.
Let φ ∈ Hq(Rn), for some 0 ≤ q, be a function with compact support; let
η ≡ supp φ, and suppose

η ⊂ Bρ = {x ∈ Rn : ‖x‖2 = x2
1 + · · ·+ x2

n < ρ}.

We assume that 0 ∈ η̊ (η̊ is the interior of η). Then define

φh
j (x) = φh

j (x1, · · · , xn) = φ

(
x− jh

h

)
= φ

(
x1 − j1h

h
, . . . ,

xn − jnh

h

)
, (3.1)

for j ∈ Zn and 0 < h ≤ 1. Clearly,

ηh
j ≡ supp φh

j =
{

x :
x− jh

h
∈ η

}
⊂ Bj

ρh = {x : ‖x− xh
j ‖ < ρh},

and xh
j ∈ η̊h

j . Particle and particle shape functions defined in this way are
translation invariant in the sense that

xh
j+l = xh

j + xh
l and φh

j+l(x) = φh
j (x− xh

l ),

and will sometimes be referred to as translation invariant. They are a special
case of general (non-uniformly distributed) particles, which will be addressed
in Section 3.3. We refer to h as the size of the particle and the function φ
is called the basic shape function. In this section we will be interested in the
approximation properties of

V k,q
h ≡



v = v(x) =

∑

j∈Zn

wh
j φh

j (x) : wh
j ∈ R



 , (3.2)
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which is the linear span of the associated shape functions, as h → 0. The
parameter k in V k,q

h is related to a property of φh
j (x)’s, which will be discussed

later. We will refer to V k,q
h as the particle space in Rn. The wh

j
′
s are called

weights. Specifically, given u ∈ Hk+1(Rn), we are interested in estimating

inf
χ∈V k,q

h

‖u− χ‖Hs(Rn), (3.3)

for 0 ≤ s ≤ min{q, k + 1}. We are especially interested in the maximum µ such
that

inf
χ∈V k,q

h

‖u− χ‖Hs(Rn) ≤ C(k, q)hµ‖u‖Hk+1(Rn), (3.4)

for 0 ≤ s ≤ min{q, k + 1}, where the constant C = C(k, q) depends on k, q, but
is independent of h (C also depends on φ).

Because we are assuming the particles are uniformly distributed, and hence
the particles and shape functions are translation invariant, estimates of the form
(3.4) can be obtained via the Fourier Transform. This was done in [4] and [80],
[81]. We will cite one of the results in [81].

Let
φ̂(ξ) = φ̂(ξ1, · · · , ξn) ≡

∫

Rn

φ(x)e−ix·ξ dx

denote the Fourier Transform of φ(x). We note that φ̂(ξ) ∈ C∞(Rn) since φ(x)
has compact support. We use the usual multi-index notation: α = (α1, . . . , αn),
with αi ≥ 0; |α| = α1 + · · ·+ αn; xα = xα1

1 · · ·xαn
n ; and

Dαφ̂ =
∂|α|φ̂

∂ξα1
1 · · · ∂ξαn

n
.

Theorem 3.1 [81] Suppose φ ∈ Hq(Rn) has compact support, where the smooth-
ness index q ≥ 0 is an integer. Then the following three conditions are are
equivalent:

1.
φ̂(0) 6= 0 (3.5)

and
Dαφ̂(2πj) = 0, for 0 6= j ∈ Zn and |α| ≤ k, (3.6)

where k is a non-negative integer.

2. For |α| ≤ k,
∑

j∈Zn

jαφ(x− j) = dxα + qα(x), for all x ∈ Rn, (3.7)

where d 6= 0 and qα(x) is a polynomial with degree < |α|.
The equality in (3.7) is equality in L2(Rn), i.e., equality for almost all x ∈
Rn. The function of the right-hand side of (3.7) is, of course, continuous.
If the function on the left-hand side is continuous, which will be the case
if q > n/2, then (3.7) will hold for all x ∈ Rn.
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3. For each u ∈ Hk+1(Rn) there are weights wh
j ∈ R, for j ∈ Zn and 0 < h,

such that

‖u −
∑

j∈Zn

wh
j φh

j ‖Hs(Rn)

≤ Chk+1−s‖u‖Hk+1(Rn), for 0 ≤ s ≤ min{q, k + 1}, (3.8)

and
hn

∑

j∈Zn

(wh
j )2 ≤ K2‖u‖2H0(Rn). (3.9)

Here C and K may depend on q, k, and s, but are independent of u and h. The
exponent k + 1− s is the best possible if k is the largest integer for which (3.7)
holds.

If (3.7) holds, the basic shape function φ is called Quasi-Reproducing of
Order k. If (3.7) holds with d = 1 and qα(x) = 0, φ is called Reproducing of
Order k. If φ is quasi-reproducing of order k (respectively, reproducing of order
k), then the corresponding particle shape functions φh

i are also called quasi-
reproducing of order k (respectively, reproducing of order k). The parameter
k in V k,q

h , defined in (3.2), is the quasi-reproducing order of the basic shape
function φ.

Remark 3.1 If one were to define the notion of quasi-reproducing basic shape
function φ of order k with the formula

∑

j∈Zn

jαφ(x− j) = dαxα + qα(x), for all x ∈ Rn, for |α| ≤ k, (3.10)

where dα 6= 0, it might appear that this would lead to a larger class of φ’s. This,
however, is not the case; it is easily shown that if φ satisfies (3.10), then dα = d,
for |α| ≤ k.

In one dimension we can prove more.

Theorem 3.2 [81] Suppose φ ∈ Hq(R) has compact support and satisfies Con-
dition 1 in Theorem 3.1, i.e., satisfies (3.5) and (3.6). Then

φ̂(ξ) = Z(ξ)
(

sin(ξ/2)
ξ/2

)k+1

, (3.11)

where Z(ξ) is an entire function.

Proof. Because φ has compact support, φ̂(ξ) is an entire function, and
because of (3.5) and (3.6), φ̂(0) 6= 0 and φ̂(ξ) has zeros of at least order k at
2πj, 0 6= j ∈ Z. Let

σ̂k(ξ) =
(

sin(ξ/2)
ξ/2

)k+1

. (3.12)
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The function σ̂k(ξ) is entire with only zeros of order k+1 at 2πj, for 0 6= j ∈ Z.
Hence

Z(ξ) = φ̂(ξ)/σ̂k(ξ)

is entire, and

φ̂(ξ) = Z(ξ)
(

sin(ξ/2)
ξ/2

)k+1

, (3.13)

as desired.

Theorem 3.3 [4] Suppose φ ∈ Hq(R) has compact support and satisfies Con-
dition 1 in Theorem 3.1, i.e., satisfies (3.5) and (3.6). Then, for any ε > 0,

supp φ 6⊂
[
− (k + 1)

2
+ ε,

(k + 1)
2

− ε

]
. (3.14)

Proof. Suppose, on the contrary, that

supp φ ⊂ [−(k + 1)/2 + ε, (k + 1)/2− ε], for some ε > 0. (3.15)

We will show that this assumption leads to a contradiction.
The function φ̂(ξ) is entire and, with ξ = ξ1 + iξ2, (3.15) implies

|φ̂(ξ)| ≤ Ce(
(k+1)

2 −ε)|ξ2|. (3.16)

This estimate follows directly from the definition of the Fourier Transform and
assumption (3.15). Using elementary properties of the sine function, we find
that ∣∣∣∣∣

(
sin(ξ/2)

ξ/2

)k+1
∣∣∣∣∣ ≥ C

e
k+1
2 |ξ2|

|ξ2|k+1
, for |ξ2| large. (3.17)

Using (3.5), (3.6), (3.16), and (3.17), we have

|Z(ξ)| =

∣∣∣∣∣∣∣
φ̂(ξ)(

sin(ξ/2
ξ/2

)k+1

∣∣∣∣∣∣∣
≤ C0 + Ck+1|ξ|k+1, for all ξ ∈ C, (3.18)

where Z(ξ) is as in (3.11). Since Z(ξ) is entire, estimate (3.18) implies (via a
generalization of Liouville’s Theorem for entire functions) that Z(ξ) is a poly-
nomial of degree ≤ k + 1. Next, we use (3.11) and (3.16) to get

∣∣∣∣∣Z(ξ)
(

sin(ξ/2)
ξ/2

)k+1
∣∣∣∣∣ = |φ̂(ξ)| ≤ Ce( k+1

2 −ε)|ξ2|. (3.19)

Combining this estimate with the lower bound in (3.17) we have

|Z(ξ)| ≤ C|ξ|k+1e−ε|ξ2|, for |ξ2| large. (3.20)
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This implies Z(ξ) = 0. Thus, (3.11) implies φ̂(ξ) = 0, which contradicts (3.5).
Thus (3.15) is false, which proves (3.14).

The case of uniformly distribute particles is very special, but we have consid-
ered it, and cited Theorem 3.1 from [81] because the result provides necessary
and sufficient conditions on the basic shape function φ for the validity of the
approximability result (3.8) and (3.9), leading to the optimal value for µ in
(3.4).

Comments on Theorems 3.1–3.3

1. φ̂(0) 6= 0 means that
∫
Rn φ(x) dx 6= 0.

2. For the validity of (3.8) and (3.9) we need a polynomial reproducing prop-
erty, namely that given in Condition 2. Note that this conditions differs
from the usual polynomial reproducing property, which reads

∑

j∈Zn

jαφ(x− j) = xα, for all |α| ≤ p,

or, equivalently,

∑

j∈Zn

p(j)φ(x− j) = p(x), for all polynomials p(x) of degree ≤ k.

3. Condition 2 implies that
∑

j∈Zn

φ(x− j) = d. (3.21)

Hence the functions φ(x−j)
d , j ∈ Zn, are a partition of unity. The sets η̊h

j

are an open cover of Rn.

4. Taking q = k + 1 allows application of Theorem 3.1 for all s ≤ k + 1.
Taking q > k + 1, i.e., assuming extra smoothness on the particle shape
functions does not change the estimate.

5. Condition (3.9) is a stability condition.

6. The simplest basic shape function φ(x) corresponds to

φ̂(ξ) =
n∏

i=1

(
sin ξi/2

ξi/2

)k+1

. (3.22)

Thus they (the φ’s) are spline functions over a rectangular mesh, which are
convolutions of the characteristic function of the set Q(n) = (−1/2, 1/2)n.
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7. In one dimension (n = 1) the simplest basic shape function corresponds
to

σ̂k(ξ) =
(

sin ξ/2
ξ/2

)k+1

, (3.23)

and they are B-splines. Furthermore, as shown in Theorem 3.2, if φ(x)
satisfies (3.5) and (3.6), then φ̂(ξ) is the product of σ̂k(ξ) and a suitable
entire function Z(ξ). Taking account of the growth of Z(ξ), we see that
it is the Fourier transform of a function with compact support. Writing
Z(ξ) = ψ̂(ξ), we can express (3.11) as

φ̂(ξ) = ψ̂(ξ)σ̂k(ξ).

Thus any φ(x) that satisfies (3.5) and (3.6), which may or may not be
piecewise polynomial, can be constructed via convolution of B-splines with
functions of compact support. If n > 1, no such divisor φ̂/σ̂k exits in
general.

8. Theorem 3.3 has as especially simple interpretation for φ’s that satisfies
(3.5) and (3.6), and whose support is an interval. Namely, supp φ ⊃[ − k+1

2 , k+1
2

]
, and hence grows with k. As is well known, the support

of the B-spline of order k is
[ − k+1

2 , k+1
2

]
, and hence it has a minimal

support.

9. The space V k,q
h is a St,k∗−regular system (this notion will be introduced

in Section 3.2), with k∗ = q and t = k + 1. St,k∗-regular systems are
analyzed in [11]. They have many important properties, some of which
will be used in the following sections.

10. The approximability of the classical finite element shape functions (the
hat functions) can be analyzed with Theorem 3.1 with q = k = 1.

11. The weights in (3.8) depend on u, but they are not unique. We note that
the functions φh

j may be linearly dependent.

3.2 Alternate Proof for Uniformly Distributed Particles
and Particle Shape Functions

In this section we first give an alternative proof that Condition 2 in Theorem 3.1
implies estimate (3.8), again for uniformly distributed particles and associated
shape functions. This alternative proof does not use the Fourier Transform,
and it can be naturally generalized to the non-uniformly distributed particles
situation.

We review our notation before stating the theorem. Recall that

xh
j = jh, for j ∈ Zn and 0 < h,

14



are the particles, and φ ∈ Hq(Rn), with q ≥ 0, is the basic shape function. Also
η = supp φ ⊂ Bρ, and 0 ∈ η̊. Then the particle shape functions, φh

j (x), are
defined by

φh
j (x) = φ

(
x− jh

h

)
;

it is immediate that
ηh

j = supp φh
j ⊂ Bj

ρh,

and xh
j ∈ η̊h

j .

Theorem 3.4 Suppose φ ∈ Hq(Rn), with smoothness index q ≥ 0, has compact
support η ⊂ Bρ, and suppose the φh

j (x) are defined in (3.1). Suppose k =
0, 1, 2, · · · and suppose, for |α| ≤ k,

∑

j∈Zn

jαφ(x− j) = dxα + qα(x); (3.24)

here d 6= 0 and qα(x) is a polynomial of degree < |α|, i.e., suppose φ is quasi-
reproducing of order k. Suppose u satisfies

∑

j∈Zn

‖u‖2
Hrj+1(Bj

ρh)
< ∞, where 0 ≤ rj ≤ k, (3.25)

where ρ ≥ 1 is sufficiently large and independent of h. Then there exist weights
wh

l such that

‖u−
∑

l∈Zn

wh
l φh

l ‖2Hs(Rn) ≤ C
∑

j∈Zn

h2(rj+1−s)‖u‖2
Hrj+1(Bj

ρh)
, for 0 ≤ s ≤ min

j∈Zn

{q, rj+1},

(3.26)
where C is independent of u and h. If u ∈ Hk′+1(Rn), where 0 ≤ k′ ≤ k, then

‖u−
∑

l∈Zn

wh
l φh

l ‖Hs(Rn) ≤ Chk′+1−s‖u‖Hk′+1(Rn), for 0 ≤ s ≤ min{q, k′ + 1}.

(3.27)

Proof. The proof is in several steps.
1. Suppose φ satisfies (3.24), and write qα(x) =

∑
|γ|≤|α|−1 dγαxγ . Then

∑

j∈Zn

(xh
j )αφh

j (x) =
∑

j∈Zn

(jh)αφh
j (x)

= h|α|
∑

j∈Zn

jαφ
(x

h
− j

)

= h|α|
{

d
(x

h

)α

+ qα
(x

h

)}

= d xα + h|α|
∑

|γ|≤|α|−1

dγα

(x

h

)γ

= d xα +
∑

|γ|≤|α|−1

h|α|−|γ|dγαxγ , for |α| ≤ k. (3.28)
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Equations (3.24) and (3.28) are, in fact, equivalent; (3.28) could be viewed as
a scaled version of (3.24). For any p ∈ Pk, there is a uniquely determined
w = wp,h ∈ Pk satisfying

p(x) =
∑

j∈Zn

wp,h(xh
j )φh

j (x), for all x ∈ Rn. (3.29)

We first prove the existence of wp,h, and begin by considering the monic poly-
nomials: pα = xα. Suppose |α| = 0. Then from (3.28) we have

1 =
∑

j∈Zn

1
d

φh
j (x) =

∑

j∈Zn

w{1},h(xh
j ) φh

j (x),

where w{1},h(x) = 1/d. Next suppose |α| = 1. Using (3.28) again we have

xα =
∑

j∈Zn

1
d
(xh

j )αφh
j (x)− d0α

d
=

∑

j∈Zn

w{xα},h(xh
j )φh

j (x)

where
w{xα},h(x) =

xα

d
− hd0α

d2
.

Proceeding in this way, by induction, we get w{xα},h(x) for |α| ≤ k, where
w{xα},h(x) is of the form

w{xα},h(x) = eααxα +
∑

|β|≤|α|−1

eαβh|α|−|β|xβ , (3.30)

where eαα = d−1 and eαβ are expressions in dγα, |γ| < |α|. For p(x) =∑
|α|≤k cαxα, we let wp,h(x) =

∑
|α|≤k cαw{xα},h(x). It is immediate that

p(x) =
∑

j∈Zn

wp,h(xh
j )φh

j (x),

which establishes the existence of wp,h(x). One can show that

wp,h(x) =
∑

|β|≤k

[ ∑

|β|+1≤|α|≤k, α=β

cαdαβh|α|−|β|
]
xβ . (3.31)

To prove the uniqueness, suppose wp,h(x) = 0. We will show that p(x) =∑
|α|≤k cαxα = 0. Since wp,h(x) = 0, it is clear from (3.31) that the coefficient of

xβ is zero for |β| ≤ k, from which we can deduce that cα = 0, |α| ≤ k, and thus
p(x) = 0. It will be convenient to write wp,h(x) = Ahp. Then Ah : Pk → Pk is
a 1–1, onto mapping satisfying

p(x) =
∑

j∈Zn

(Ahp)(xh
j )φh

j (x), for all x ∈ Rn, for any p ∈ Pk. (3.32)

16



We define A = Ah when h = 1. We note that A satisfies (3.32) with h = 1. We
also have

[(Ah)−1w](x) =
∑

j∈Zn

w(xh
j )φh

j , for all x ∈ Rn, for any w ∈ Pk. (3.33)

It is also clear from the construction of that Ah : Pi → Pi, for i ≤ k.
2. Define the cells ωj and ωh

j :

ωj = {x : ‖x− j‖∞ ≡ max
i=1,...,n

|xi − ji| < ρ}

and
ωh

j = {x : ‖x− xh
j ‖∞ ≡ max

i=1,...,n
|xi − xh

ji
| < ρh}.

The families {ωj}j∈Zn and {ωh
j }j∈Zn are open covers of Rn provided ρ > 1/2.

Let
Ah

j = {l ∈ Zn : ηh
l ∩ ωh

j 6= ∅},
and define

Ωh
j = ∪l∈Ah

j
ωh

l .

It is immediate that one can select M and ρ̄ such that

card Ah
j ≤ M (3.34)

and
Ωh

j ⊂ Bj
ρ̄h. (3.35)

The constants M and ρ̄ are independent of j and h, but do depend on φ;
specifically on ρ.

For any l ∈ Zn, since u ∈ Hrl+1(Bl
ρ̄h), it is well known ([25],[26],[29]) that

there is a polynomial pl,h = pl,h
k of degree ≤ k such that

‖u− pl,h‖Hs(Bl
ρ̄h) ≤ Chrl+1−s‖u‖Hrl+1(Bl

ρ̄h), for 0 ≤ s ≤ rl + 1 ≤ k + 1, (3.36)

where C is independent of u, h, and l, but does depend on k (pl,h can, in fact,
be chosen such that its degree ≤ rl). Define the weights

wh
l = (Ahpl,h)(xh

l ). (3.37)

Let j be fixed. We will work with the polynomial pj,h, which satisfies (3.36)
with l = j, as well as the polynomial pl,h. Using (3.37), we find

‖u−
∑

l∈Zn

wh
l φh

l ‖Hs(ωh
j )

≤ ‖u−
∑

l∈Ah
j

wh
l φh

l ‖Hs(ωh
j )

≤ ‖u−
∑

l∈Ah
j

(Ahpj,h)(xh
l )φh

l ‖Hs(ωh
j )

+
∑

l∈Ah
j

|(Ahpj,h)(xh
l )− (Ahpl,h)(xh

l )| ‖φh
l ‖Hs(ωh

j ). (3.38)
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We now estimate the two terms on the right side of (3.38).
3. From (3.32) and the definition of Ah

j , we have

p(x) =
∑

l∈Zn

(Ahp)(xh
l )φh

l (x) =
∑

l∈Ah
j

(Ahp)(xh
l )φh

l (x), for x ∈ ωh
j ,

for any p ∈ Pk. Using this formula and (3.36) with l = j, we obtain the estimate

‖u−
∑

l∈Ah
j

(Ahpj,h)(xh
l )φh

l ‖Hs(ωh
j ) = ‖u− pj,h‖Hs(ωh

j )

≤ Chrj+1−s‖u‖Hrj+1(Bj
ρ̄h), (3.39)

for the first term of (3.38).
A scaling argument shows that

‖φh
l ‖Hs(ωh

j ) ≤ h−s+n/2‖φ‖Hs(Rn).

Thus
∑

l∈Ah
j

|Ahpj,h(xh
l )−Ahpl,h(xh

l )| ‖φh
l ‖Hs(ωh

j )

≤ Ch−s+n/2
∑

l∈Ah
j

|Ahpj,h(xh
l )−Ahpl,h(xh

l )|. (3.40)

It remains to estimate the right side of this inequality.
For l ∈ Ah

j , ωh
l ⊂ Ωh

j , and hence, using (3.35), ωh
l ⊂ Bj

ρ̄h. Also ωh
l ⊂ Bl

ρ̄h.
Thus, using (3.36) with s = 0, we have

‖pj,h − pl,h‖H0(ωh
l ) ≤ ‖pj,h − u‖H0(ωh

l ) + ‖u− pl,h‖H0(ωh
l )

≤ ‖pj,h − u‖H0(Bj
ρ̄h) + ‖u− pl,h‖H0(Bl

ρ̄h)

≤ Chrj+1‖u‖Hrj+1(Bj
ρ̄h)

+Chrl+1‖u‖Hrl+1(Bl
ρ̄h). (3.41)

It is easily shown that there is a constant C such that

‖w‖L∞(ωh
l ) ≤ Ch−n/2‖w‖H0(ωh

l ), for any w ∈ Pk; (3.42)

C is independent of w, h, and l. Applying (3.42) to w = Ahpj,h − Ahpl,h, we
have

|(Ahpj,h)(xh
l )− (Ahpl,h)(xh

l )|
≤ ‖Ahpj,h −Ahpl,h‖L∞(ωh

l )

≤ Ch−n/2‖Ahpj,h −Ahpl,h‖H0(ωh
l ). (3.43)

18



For any p ∈ Pk, we write p(x) = p̃
(

x−xh
l

h

)
where p̃ ∈ Pk. Using (3.32) with

h = 1 (recall that A = Ah for h = 1), we see that

p̃(x) =
∑

i∈Zn

(Ap̃)(i)φ(x− i),

and therefore

p(x) = p̃

(
x− xh

l

h

)

=
∑

i∈Zn

(Ap̃)(i)φ

(
x− xh

i+l

h

)

=
∑

i∈Zn

(Ap̃)(i)φh
i+l(x)

=
∑

i∈Zn

(Ap̃)(i− l)φh
i (x)

=
∑

i∈Zn

(Ap̃)
(

xh
i − xh

l

h

)
φh

i (x)

Comparing the above expression with (3.32) and using the uniqueness of the
representation (3.29), we obtain

(Ahp)(x) = (Ap̃)
(

x− xh
l

h

)
. (3.44)

We further note that ‖Ap̃‖H0(ω0) is a norm on p̃, and since all norms are equiv-
alent on a finite dimensional space, we have

‖Ap̃‖H0(ω0) ≤ C‖p̃‖H0(ω0). (3.45)

Therefore from (3.44) and (3.45), and using the transformation y = (x−xh
l )/h,

we have

‖Ahp‖2H0(ωh
l ) =

∫

ωh
l

|(Ahp(x)|2 dx =
∫

ω0

|(Ap̃(y)|2 dy

≤ C

∫

ω0

|p̃(y)|2 dy

= C

∫

ωh
l

|p̃((x− xh
l )/h)|2 dx

= C

∫

ωh
l

|p(x)|2 dx

= C‖p‖2H0(ωh
l ), for p ∈ Pk, (3.46)
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with C independent of p, l, and h. Combining (3.43), (3.46) with pl,h − pj,h,
and (3.41) yields

|(Ahpj,h)(xh
l )− (Ahpl,h)(xh

l )|
≤ Ch−n/2(hrj+1‖u‖Hrj+1(Bj

ρ̄h) + hrl+1‖u‖Hrl+1(Bl
ρ̄h)),

and hence, using (3.34), we have the estimate
∑

l∈Ah
j

|(Ahpj,h)(xh
l )− (Ahpl,h)(xh

l )|

≤ Ch−n/2{Mhrj+1‖u‖Hrj+1(Bj
ρ̄h)

+
∑

l∈Ah
j

hrl+1‖u‖Hrl+1(Bl
ρ̄h)} (3.47)

for the right side of (3.38). Now we combine (3.38), (3.39), (3.40), and (3.47)
to obtain

‖u−
∑

l∈Zn

wh
l φh

l ‖Hs(ωh
j ) ≤ C

∑

l∈Ah
j

hrl+1−s‖u‖Hrl+1(Bl
ρ̄h). (3.48)

4. Finally, we estimate ‖u − ∑
l∈Zn wh

l φh
l ‖Hs(Rn). Using (3.48), which is

valid for all j ∈ Zn, and (3.34) we obtain

‖u−
∑

l∈Zn

wh
l φh

l ‖2Hs(Rn) ≤
∑

j∈Zn

‖u−
∑

l∈Zn

wh
l φh

l ‖2Hs(ωh
j )

≤ CM
∑

j∈Zn

∑

l∈Ah
j

h2(rl+1−s)‖u‖2Hrl+1(Bl
ρ̄h)

≤ C
∑

j∈Zn

h2(rj+1−s)‖u‖2
Hrj+1(Bj

ρ̄h)
, (3.49)

where C is independent of u and h. This proves (3.26).
Suppose u ∈ Hk′+1(Rn), where 0 ≤ k′ ≤ k. Then taking rj = k′ in (3.49),

and using the fact that the overlap in {Bj
ρ̄h}j∈Zn is bounded independently of

h, we get

‖u−
∑

l∈Zn

wh
l φh

l ‖Hs(Rn) ≤ Chk′+1−s


 ∑

j∈Zn

‖u‖2
Hk′+1(Bj

ρ̄h)




1/2

(3.50)

≤ Chk′+1−s‖u‖Hk′+1(Rn),

where C is independent of u and h, which is (3.27).

Remark 3.2 Estimates (3.26) and (3.27) have been established provided ρ̄ is
sufficiently large; specifically, provided (3.34) holds. As pointed out in connec-
tion with (3.35), ρ̄ depends on ρ. Note that the constants C in (3.26) and (3.27)
depend on ρ̄.
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So far in this section, we have considered functions u defined on Rn, and have
presented a result on the approximation of u by particle shape functions. We
now consider functions u defined on a bounded domain Ω in Rn with Lipschitz
continuous boundary. We will show that V k,q

h , defined in (3.2), when restricted
to Ω, provides accurate approximation to u.

We first recall the well known extension result ([78]), that there is a bounded
extension operator E : L2(Ω) → L2(Rn), i.e., an operator E satisfying Eu|Ω = u
for all u ∈ L2(Ω), such that if u ∈ Hm(Ω), then Eu ∈ Hm(Rn) and

‖Eu‖Hm(Rn) ≤ Cm‖u‖Hm(Ω), for all u ∈ Hm(Ω), m = 0, 1, . . . . (3.51)

Here Cm is independent of u but depends on m.
We define a subset of Zn

Ω of Zn, which will be used in the next result, by

Zn
Ω = {j ∈ Zn : η̊h

j ∩ Ω 6= ∅}, (3.52)

where ηh
j = supp φh

j .

Theorem 3.5 Suppose φ ∈ Hq(Rn), with smoothness index q ≥ 0, has compact
support η ⊂ Bρ, and is quasi-reproducing of order k. Suppose u ∈ Hk′+1(Ω),
where 0 ≤ k′ ≤ k. Then there are weights wh

j such that

‖u−
∑

l∈Zn
Ω

wh
l φh

l ‖Hs(Ω) ≤ Chk′+1−s‖u‖Hk′+1(Ω), 0 ≤ s ≤ min(q, k′+1), (3.53)

where C is independent of u and h.

Proof. Suppose u ∈ Hk′+1(Ω), and let ū = Eu, where E is the extension
operator mentioned above. Applying (3.27) of Theorem 3.4 to ū, there are
weights wh

l such that

‖ū−
∑

l∈Zn

wh
l φh

l ‖Hs(Rn) ≤ Chk′+1−s‖ū‖Hk′+1(Rn).

Therefore, from (3.51) with m = k′ + 1, we have

‖u−
∑

l∈Zn

wh
l φh

l ‖Hs(Ω) = ‖ū−
∑

l∈Zn

wh
l φh

l ‖Hs(Ω)

≤ ‖ū−
∑

l∈Zn

wh
l φh

l ‖Hs(Rn)

≤ Chk′+1−s‖ū‖Hk′+1(Rn)

≤ Chk′+1−s‖u‖Hk′+1(Ω). (3.54)

From the definition of Zh
Ω in (3.52), it is clear that

‖u−
∑

l∈Zn

wh
l φh

l ‖Hs(Ω) = ‖u−
∑

l∈Zn
Ω

wh
l φh

l ‖Hs(Ω),
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and therefore from (3.54), we get the desired result.

By examining the approximation of u, obtained in Theorem 3.5, namely
∑

l∈Zn
Ω

wh
l φh

l

∣∣
Ω
,

we see that the sum involves only those l’s for which

supp φh
l ∩ Ω 6= ∅,

i.e., only those particles xh
l such that dist(xh

l , Ω) < ρh. So the approximation
involves particle shape functions corresponding to the particles inside Ω, as
well as some particles lying outside Ω. We will denote the span of these shape
functions by

V k,q
Ω,h = span{φh

j

∣∣
Ω

: supp φh
j ∩ Ω 6= ∅}. (3.55)

Thus the functions in V k,q
Ω,h are the functions in V k,q

h restricted to Ω.

(t,k∗)-regular systems:

We now introduce the notion of a (t, k∗)–regular system of functions (cf.
[11]). Let Ω ⊆ Rn, and suppose Sh(Ω), 0 < h ≤ 1, is a one-parameter family
of linear spaces of functions on Ω. For 0 ≤ k∗ ≤ t, Sh(Ω) will be called a
(t, k∗)–regular system and will be denoted by St,k∗

h (Ω) if

1. St,k∗

h (Ω) ⊂ Hk∗(Ω), for 0 < h ≤ 1. (3.56)

2. For every u ∈ H l(Ω), with 0 ≤ l, there is a function gh ∈ St,k∗

h such that
‖u− gh‖Hs(Ω) ≤ Chµ‖u‖Hl(Ω), for 0 ≤ s ≤ min{l, k∗}, (3.57)

where µ = min{t− s, l − s}. The constant C is independent of u and h.

We now introduce two additional notions.

(LA) A (t, k∗)–regular system St,k∗

h (Ω) is said to satisfy a local assumption if
for u ∈ H l(Ω), with support S, the function gh ∈ St,k∗

h (Ω) in (3.57) can
be chosen so that the support Sh of gh has the property that

Sh ⊂ Sλh ≡ {x ∈ Ω : d(x, S) ≤ λh},

where d(x, S) is the distance from x to S, and λ is independent of h.

(IA) We say that St,k∗

h (Ω) satisfies an inverse assumption (cf. [11]) if there is
an 0 ≤ ε ≤ k∗ such that

‖g‖Hk∗ (Ω) ≤ Ch−(k∗−r)‖g‖Hr(Ω), for all k∗−ε ≤ r ≤ k∗ and all g ∈ St,k∗

h (Ω),

where C is independent of h and g (it may depend on k∗ and ε).
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A (t, k∗)-regular system is known as (t, k)-regular system in classical literature
([11]). We have decided to use k∗ instead of k in this paper for notational clarity.

The approximation space V k,q
Ω,h, defined in (3.55), is a (t, k∗)–regular system;

more precisely we have,

Theorem 3.6 Suppose 0 ≤ q < k + 1, and suppose φ ∈ Hq(Rn) has compact
support and is quasi-reproducing of order k. Then V k,q

Ω,h is a (k + 1, q)–regular
system.

Proof. We show that V k,q
h is a (t, k∗)–regular system with t = k + 1 and

k∗ = q. Since φ ∈ Hq(Rn), it is clear that V k,q
Ω,h ⊂ Hq(Ω) and thus (3.56)

is immediate with k∗ = q. Next we show that (3.57) is satisfied. Suppose
u ∈ H l(Rn) with l ≥ 0. If l = 0, (3.57) is trivial. So, suppose 1 ≤ l. Applying
Theorem 3.5, specifically (3.53) with k′ = min(k + 1, l)− 1, we get

‖u−
∑

j∈Zn
Ω

wh
j φh

j ‖Hs(Ω) ≤ Chmin(l−s,k+1−s)‖u‖Hmin(l,k+1)(Ω) ≤ Chµ‖u‖Hl(Rn),

for 0 ≤ s ≤ min{q, min{l, k + 1}} = min{l, q} (since q < k + 1), where µ =
min{k + 1 − s, l − s}. This is (3.57), with gh =

∑
l∈Zn

Ω
wh

l φh
l

∣∣
Ω
, t = k + 1, and

k∗ = q.

We now show that V k,q
Ω,h satisfies the local assumption (LA).

Theorem 3.7 Suppose φ ∈ Hq(Rn), where 0 ≤ q ≤ k +1, has compact support
and is quasi-reproducing of order k. Then V k,q

Ω,h satisfies the local assumption
(LA).

Proof. Suppose u ∈ H l(Ω) such that supp u = S ⊂ Ω. Consider the
approximation of u, obtained in Theorem 3.5, namely

gh =
∑

j∈Zn
Ω

wh
j φh

j . (3.58)

A careful study of the proofs of Theorems 3.5 and 3.4, and considering the zero
extension of u outside Ω, reveals that for j ∈ Zn

Ω,

wh
j = 0, if and only if Bj

ρ̄h ∩ S = ∅.

Now for j ∈ Zn
Ω such that wh

j 6= 0, we know that ηh
j = supp φh

j ⊂ Bj
ρh.

Therefore, Sh = supp gh = {x ∈ Rn : d(x, S) ≤ (ρ̄ + ρ)h}, and so we can take
λ = (ρ̄ + ρ) in the definition of LA. For small h, we have Sh ⊂ Ω. Hence V k,q

Ω,h

satisfies the local assumption LA.

Remark 3.3 The particle space V k,q
h is (k +1, q)-regular and satisfies the local

assumption, LA, for Ω = Rn.
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We note that the particle spaces V k,q
Ω,h and V k,q

h will also satisfy the inverse as-
sumption IA, if additional conditions are imposed on the shape functions {φh

j }.
We will formulate these conditions in Section 3.3 in the context of non-uniformly
distributed particles; the corresponding conditions on the shape functions as-
sociated with uniformly distributed particles can then be obtained as a special
case.

3.3 Approximation by Particle Shape Functions Associ-
ated with Arbitrary (Non-Uniformly Distributed) Par-
ticles in Rn. The h-version

In this section we will generalize the major part of Theorem 3.4.
Suppose {Xν}ν∈N is a family of countable subsets of Rn; the family is in-

dexed by the parameter ν, which varies over the index set N . The points in Xν

are called particles, and will be denoted by x, to distinguish them from general
points in Rn. If it is necessary to underline that x ∈ Xν , we will write x = xν .
To each xν ∈ Xν we associate

• hν
xν = hν

x, a positive number;

• ων
xν = ων

x, a bounded domain in Rn;

• φν
xν = φν

x, a function in Hq(Rn), with q ≥ 0 and with ην
xν = ην

x ≡ supp φν
xν

assumed compact.

The numbers hν
xν = hν

x will be referred to as the sizes of the particles x, and
the functions φν

xν are called the particle shape functions. For a given ν ∈ N , let

Mν =
{

Xν , {hν
x, ων

x, φν
x}x∈Xν

}
.

Mν will be referred to as particle-shape function system — and {Mν}ν∈N as a
family of particle-shape function systems. This nomenclature is similar to that
used in FEM when we speak of a triangulation and a family of triangulation.

Regarding the particle-shape function system, we make several assumptions:

A1. For each ν, ⋃

x∈Xν

ων
x = Rn,

i.e., for each ν, {ων
x}x∈Xν is an open cover of Rn.

A2. For x ∈ Xν , let
Sν

x ≡ {y ∈ Xν : ων
x ∩ ων

y 6= ∅}.
There is a constant κ < ∞, which may depend on {Mν}ν∈N , but neither
on ν, nor on x ∈ Xν , such that

card Sν
x ≤ κ, for all x ∈ Xν and all ν ∈ N.
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A3. For all x ∈ Xν , for all ν ∈ N , x ∈ η̊ν
x and η̊ν

x ⊂ ων
x.

A4. For x ∈ Xν , let
Ων

x =
⋃

y∈Qν
x

ων
y ,

where
Qν

x ≡ {y ∈ Xν : ην
y ∩ ων

x 6= ∅}.
There is a 0 < ρ̄ < ∞, which may depend on {Mν}ν∈N , but is independent
of x and ν, such that

Ων
x ⊂ B

x
ρ̄hν

x
, for all x ∈ Xν , for all ν ∈ N,

where B
x
ρ̄hν

x
is the ball of radius ρ̄hν

x centered at x, namely,

B
x
ρ̄hν

x
= {x ∈ Rn : ‖x− x‖ ≤ ρ̄hν

x}.

A5. For each x ∈ Xν , there is a one-to-one mapping Aν
x : Pk → Pk such that

∑

y∈Qν
x

(Aν
xp)(y)φν

y(x) = p(x), for x ∈ ων
x, and any p ∈ Pk, (3.59)

and

‖Axp‖L2(ων
y ) ≤ C‖p‖L2(ων

y ), for all p ∈ Pk, for all y ∈ Qν
x, for all x ∈ Xν .

A6. For any 0 ≤ s ≤ q,

‖φν
y‖Hs(ων

z ) ≤ C(hν
y)−s+n/2, for all y ∈ Qν

x.

The constant C may depend on {Mν}ν∈N , but is independent of y, x, and
ν.

A7. There is a constant C such that

‖w‖L∞(ων
y ) ≤ C(hν

y)−n/2‖w‖L2(ων
y ), for any w ∈ Pk,

where C is independent of y and ν.

Remark 3.4 From the definitions of Qν
x and Sν

x , and assumption A3, it is clear
that Qν

x ⊂ Sν
x . Hence from the assumption A2, it is immediate that

card Qν
x ≤ κ. (3.60)

We could, of course, have stated (3.60) as an assumption, but have chosen to
state card Sν

x ≤ κ as an assumption because, generally, Sν
x is easier to work with

than Qν
x. We also note that assumptions A1–A4 imply that, for any x ∈ Rn,

card {x ∈ Xν : x ∈ η̊ν
x} ≤ κ, for all ν ∈ N. (3.61)
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Remark 3.5 We note that the left-hand side of (3.59) in A5 is defined for all
x ∈ Rn, but the equality holds only for x ∈ ων

x.

Remark 3.6 Note that assumptions A1–A7 can be thought of as assumptions
on Mν , for each ν ∈ N ; they are assumptions on {Mν}ν∈N in that they are
assumptions on Mν for each ν and that the constants in the assumptions do
not depend on ν.

Remark 3.7 Assumptions A5 effectively defines the notion of quasi-reproducing
shape functions φν

x of order k. Note that the condition is local: the operator Aν
x

depends on x, the sum is taken only over y ∈ Qν
x, and the equation holds only

for x ∈ ων
x. The shape functions φν

x are said to be reproducing of order k if
∑

y∈Xν

p(y)φν
y(x) = p(x), for x ∈ Rn, and any p ∈ Pk.

If the shape functions φν
x are reproducing of order k, then it is immediate that

they satisfy A5 with Aν
x equal to the identity mapping for each x.

Remark 3.8 Assumption A5 implies
⋃

x∈Xν

η̊ν
x = Rn, for each ν.

Remark 3.9 Consider uniformly distributed particles, xh
j , and associated par-

ticle shape functions, φh
j , as defined in Section 3.2. Then with xν = xh

j , hν
x = h,

φν
x = φh

j , and ων
x = ωh

j , as defined in the proof of Theorem 3.4, the asso-
ciated particle shape function system satisfy assumptions A1–A7. Note that
Aν

x = Ah
xh

j
= Ah satisfies A5.

Suppose {Mν}ν∈N is a family of particle shape function systems, satisfying
A1–A7. Define

Vk,q
ν = span {φν

x : x ∈ Xν}, for each ν ∈ N. (3.62)

The next theorem gives an approximation error estimate when a function u,
defined on Rn, is approximated by a function in Vk,q

ν , ν ∈ N .

Theorem 3.8 Suppose the family of particle-shape function systems {Mν}ν∈N

satisfies A1–A7, and hν
x ≤ 1 for x ∈ Xν , ν ∈ N . Suppose

∑

x∈Xν

‖u‖2
H

rν
x+1

(B
x
ρ̄hν

x
)
< ∞, where rν

x ≤ k, for all x ∈ Xν , for all ν ∈ N,

(3.63)
where ρ is introduced in A4. Also, suppose that operators Aν

x, introduced in A5,
satisfy

‖(Aν
x −Aν

y)p‖H0(ων
y ) ≤ C(hν

x)rν
x+1‖p‖H0(ων

y ), for all p ∈ Pk, y ∈ Qν
x, (3.64)
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for all x ∈ Xν , ν ∈ N , where C is independent of x and ν. Then there are
weights wν

y ∈ R, for y ∈ Xν , for all ν ∈ N , such that

‖u −
∑

y∈Xν

wν
yφν

y‖Hs(Rn)

≤ C
( ∑

y∈Xν

(hν
y)2(r

ν
y+1−s)‖u‖2

H
rν

y+1
(B

y

ρ̄hν
y
)

)1/2

, (3.65)

for 0 ≤ s ≤ inf{q, rν
y + 1 : y ∈ Xν , ν ∈ N}. The constant C depends on the

constants in Assumptions A1–A7 and on (3.64), but neither on u, nor on ν.

Note: If φν
x’s are reproducing of order k, then (3.64) is trivially satisfied (cf.

Remark 3.7). Since in practice, mainly shape functions, that are reproducing of
order k, are used, we have not included (3.64) in the set of basic assumptions
(A1–A7).

Proof . The proof of this result is parallel to the proof of Theorem 3.4.
1. The sets ων

x play the role of the sets ωh
j in the proof of Theorem 3.4. The

sets Qν
x, Ων

x, B
x
ρ̄hν

x
, and the mapping Aν

x play the roles of the sets Ah
j ,Ωh

j , Bj
ρ̄h,

and the mapping Ah
j , respectively, in the proof on Theorem 3.4. Assumptions

A1–A7 state the properties of these sets and the mappings we will need in this
proof.

2. For any y ∈ Xν , since u ∈ H
rν

y+1(B
y

ρ̄hν
y
), it is well-known that there is a

polynomial py,ν = p
y,ν

k of degree ≤ k, such that

‖u− p
y,ν

k ‖Hs(B
y

ρ̄hν
y
) ≤ C(hν

y)rν
y+1−s‖u‖

H
rν

y+1
(B

y

ρ̄hν
y
)
, (3.66)

for 0 ≤ s ≤ rν
y + 1 ≤ k + 1, where C is independent of u, ν and y, but does

depend on k ( p
y,ν

k can, in fact, be selected so that its degree ≤ rν
y ). Define the

weights
wν

y = (Aν
ypy,ν)(y), (3.67)

where Aν
y is the operator introduced in assumption A5.

Let x ∈ Xν be fixed. We will work with the polynomial px,ν , which satisfies
(3.66) with y = x, as well as the polynomial py,ν . Using (3.67) we find

‖u−
∑

y∈Xν

wν
yφν

y‖Hs(ων
x)

≤ ‖u−
∑

y∈Qν
x

wν
yφν

y‖Hs(ων
x)

≤ ‖u−
∑

y∈Qν
x

(Aν
x px,ν)(y) φν

y‖Hs(ων
x)

+
∑

y∈Qν
x

∣∣(Aν
x px,ν)(y)− (Aν

y py,ν)(y)
∣∣ ‖φν

y‖Hs(ων
x). (3.68)
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We now estimate the two terms on the right-hand side of (3.68).
3. From the assumption A5, we know that

∑

y∈Qν
x

(Aν
xp)(y)φν

y(x) = p(x), for x ∈ ων
x, and any p ∈ Pk.

Using this formula and (3.66) with y = x, we obtain the estimate

‖u−
∑

y∈Qν
x

(Aν
x px,ν)(y)φν

y‖Hs(ων
x) ≤ ‖u− px,ν‖Hs(ων

x)

≤ C(hν
x)rν

x+1−s‖u‖
H

rν
x+1

(B
x
ρ̄hν

x
)
(3.69)

for the first term.
Using assumption A6, we have

‖φν
y‖Hs(ων

z ) ≤ C(hν
y)−s+n/2, for all y ∈ Qν

x.

Thus
∑

y∈Qν
x

∣∣(Aν
x px,ν)(y)− (Aν

y py,ν)(y)
∣∣ ‖φν

y‖Hs(ων
x)

≤
∑

y∈Qν
x

(hν
y)−s+n/2

∣∣(Aν
x px,ν)(y)− (Aν

y py,ν)(y)
∣∣. (3.70)

It remains to estimate the right-hand side of this inequality.
For y ∈ Qν

x, we have ων
y ∈ Ων

x, and hence, using the assumption A4, ων
y ∈

B
x
ρ̄hν

x
. Also ων

y ∈ B
y

ρ̄hν
y
. Thus, using (3.66) with s = 0, we have

‖px,ν − py,ν‖H0(ων
y )

≤ ‖px,ν − u‖H0(ων
y ) + ‖u− py,ν‖H0(ων

y )

≤ (hν
x)rν

x+1‖u‖
H

rν
x+1

(B
x
ρ̄hν

x
)
+ (hν

y)rν
y+1‖u‖

H
rν

y+1
(B

y

ρ̄hν
y
)
. (3.71)

Now, using the assumption A7, we have
∣∣(Aν

x px,ν)(y)− (Aν
y py,ν)(y)

∣∣
≤

∣∣[(Aν
x −Aν

y)px,ν ](y)
∣∣ +

∣∣[Aν
y(px,ν − py,ν)](y)

∣∣
≤ ‖(Aν

x −Aν
y)px,ν‖L∞(ων

y ) + ‖Aν
y(px,ν − py,ν)‖L∞(ων

y )

≤ C(hν
y)−n/2

{‖(Aν
x −Aν

y)px,ν‖H0(ων
y )

+‖Aν
y(px,ν − py,ν)‖H0(ων

y )

}
. (3.72)
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Also, using the assumption A5 and (3.71), we obtain

‖Aν
y(px,ν − py,ν)‖H0(ων

y )

≤ C‖px,ν − py,ν‖H0(ων
y )

≤ C
{
(hν

x)rν
x+1‖u‖

H
rν

x+1
(B

x
ρ̄hν

x
)
+ (hν

y)rν
y+1‖u‖

H
rν

y+1
(B

y

ρ̄hν
y
)

}
. (3.73)

Moreover, from (3.64), we have

‖(Aν
x −Aν

y)px,ν‖H0(ων
y ) ≤ (hν

x)rν
x+1‖px,ν‖H0(ων

y ), (3.74)

and from (3.66), with y = x, and recalling that hν
x ≤ 1, we get

‖px,ν‖H0(ων
y ) ≤ ‖px,ν − u‖H0(ων

y ) + ‖u‖H0(ων
y )

≤ C(hν
x)rν

x+1‖u‖
H

rν
x+1

(B
x
ρ̄hν

x
)
+ ‖u‖H0(ων

y )

≤ C‖u‖
H

rν
x+1

(B
x
ρ̄hν

x
)
. (3.75)

Combining (3.72)–(3.75), we have
∣∣(Aν

x px,ν)(y)− (Aν
y py,ν)(y)

∣∣

≤ C(hν
y)−n/2

{
(hν

x)rν
x+1‖u‖

H
rν

x+1
(B

x
ρ̄hν

x
)
+ (hν

y)rν
y+1‖u‖

H
rν

y+1
(B

y

ρ̄hν
y
)

}
.

(3.76)

Then we combine (3.70), (3.76), (3.60), and assumption A2 (cf. (3.60)) to get
∑

y∈Qν
x

∣∣(Aν
x px,ν)(y)− (Aν

y py,ν)(y)
∣∣‖φν

y‖Hs(ωω
x )

≤ C
{
κ(hν

x)rν
x+1‖u‖

H
rν

x+1
(B

x
ρ̄hν

x
)
+

∑

y∈Qν
x

(hν
y)rν

y+1‖u‖
H

rν
y+1

(B
y

ρ̄hν
y
)

}

≤ C
∑

y∈Qν
x

(hν
y)rν

y+1‖u‖
H

rν
y+1

(B
y

ρ̄hν
y
)
. (3.77)

which is an estimate for the second term in (3.68). Thus, from (3.68), (3.69),
and (3.77), we have

‖u−
∑

y∈Qν
x

wν
yφν

y‖Hs(ων
x) ≤ C

∑

y∈Qν
x

(hν
y)rν

y+1‖u‖
H

rν
y+1

(B
y

ρ̄hν
y
)
. (3.78)

4. It remains to estimate ‖u−∑
y∈Xν wν

yφν
y‖Hs(Rn). Using (3.78), which is
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valid for all x ∈ Xν , and assumptions A1, A2, A4, we obtain

‖u−
∑

y∈Xν

wν
yφν

y‖2Hs(Rn) ≤
∑

x∈Xν

‖u−
∑

y∈Xν

wν
yφν

y‖2Hs(ων
x)

≤ Cκ
∑

x∈Xν

∑

y∈Qν
x

(hν
y)2(r

ν
y+1−s)‖u‖2

H
ry+1 (B

y

ρ̄hν
y
)

≤ C
∑

y∈Xν

(hν
y)2(r

ν
y+1−s)‖u‖2

H
ry+1 (B

y

ρ̄hν
y
)
, (3.79)

which is (3.65).

It will be useful to state estimate (3.65) in Theorem 3.8 in certain alternate
ways. Given a family of particle-shape function systems {Mν}ν∈N satisfying
A1–A7, define

hν = sup
x∈Xν

hν
x, for each ν. (3.80)

With this definition, from (3.65) we have

‖u−
∑

y∈Xν

wν
yφν

y‖Hs(Rn) ≤ C
( ∑

y∈Xν

(hν)2(r
ν
y+1−s)‖u‖

H
rν

y+1
(Bν

ρ̄hν
y
)

)1/2

. (3.81)

Now, if rν
xν = k′, where 0 ≤ k′ ≤ k, for all y ∈ Xν , for all ν, then (3.81) leads

to the following result.

Theorem 3.9 Suppose the family of particle-shape function systems {Mν}ν∈N

satisfies A1–A7, (3.64), and in addition, suppose hν ≤ 1, for all ν. Suppose
‖u‖Hk′+1(Rn) < ∞, where 0 ≤ k′ ≤ k. Then there are weights wν

y ∈ R such that

‖u−
∑

y∈Xν

wν
yφν

y‖Hs(Rn) ≤ C(hν)k′+1−s‖u‖Hk′+1(Rn), (3.82)

for 0 ≤ s ≤ min(q, k′ + 1), where C is independent of u and ν.

We note that if hν1 < hν2 , ν1, ν2 ∈ N , then we would view Mν1 as a
“refinement” of Mν2 .

There is yet another way to state the estimate (3.82). Let 0 < h ≤ 1,
and suppose {Mν}ν∈N , a family of particle-shape function systems satisfying
A1–A7, (3.64), and in addition,

hν = sup
xν∈Xν

hν
xν ≤ h, for each ν. (3.83)

We can now think of ν = ν(h) as determined by h, although, of course, many
particle-shape function systems satisfy (3.83). We can, in fact, think of having
a one-to-one correspondence between ν and h. Thus we can regard h as the
parameter and write a family of particle-shape function systems as

{Mh}0<h≤1 = {Xh, {hh
x, ωh

x , φh
x}x∈Xh}0<h≤1
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instead of {Mν}ν∈N . With this understanding that ν = ν(h), the estimate
(3.82) can be written as

‖u−
∑

y∈Xh

wh
yφh

y‖Hs(Rn) ≤ Chk+1−s‖u‖Hk+1(Rn). (3.84)

We are naturally interested in having h ↘ 0, and hence in considering ν(h)’s
for which hν(h) ↘ 0. More specifically, we will often consider a sequence h1 >
h2 > · · · ↘, and the corresponding sequence of particle systems Mν1 , Mν2 , · · · ,
where νl = ν(hl).

We remark that the estimate (3.65) is stronger than (3.82) and (3.84), in
that (3.65) uses hν

xν instead of the larger hν , and (3.65) allows a more gen-
eral regularity assumption on the function u. The viewpoint, outlined in this
paragraph, is similar to the usual view of meshes in FEM.

For a given family of particle-shape function systems {Mν}ν∈N , we defined
the space Vk,q

ν in (3.62). With h, 0 < h ≤ 1, as the parameter, i.e., for a given
family Mh, 0 < h ≤ 1, we will use the space

Vk,q
h ≡ Vk,q

ν(h) = span {φh
x : x ∈ Xh}. (3.85)

So far, we have discussed the approximation of a function u defined on
Rn, by particle shape functions. We now consider u defined on Ω, where Ω is
bounded domain, with Lipschitz continuous boundary, in Rn. We now show
that functions in Vk,q

Ω,h, defined by

Vk,q
Ω,h = span{φh

x

∣∣
Ω

: φh
x ∈ Vk,q

h , where ηh
x ∩ Ω 6= ∅}, (3.86)

provide accurate approximation of functions u, defined on Ω.

Theorem 3.10 Suppose Mh, 0 < h ≤ 1, is a family of particle shape function
systems satisfying A1–A7 and (3.64). Let Ω ⊂ Rn be a bounded domain with
Lipschitz continuous boundary, and suppose u ∈ Hk′+1(Ω), where 0 ≤ k′ ≤ k.
Then there are weights wh

y ∈ R such that

‖u−
∑

y∈Xh

wh
yφh

y‖Hs(Ω) ≤ Chk′+1−s‖u‖Hk′+1(Ω), (3.87)

for 0 ≤ s ≤ min(q, k′ + 1), where the constant C is independent of u and h.

The proof of this theorem is based on using (3.84) on the extension ū = Eu,
and is similar to the proof of Theorem 3.5. We omit the proof of this theorem.
We note that the approximation

∑
y∈Xh wh

yφh
y , obtained in Theorem 3.10, is

such that ∑

y∈Xh

wh
yφh

y

∣∣∣
Ω
∈ Vk,q

Ω,h.

In Section 3.2, we reviewed the notion of (t, k∗)-regular system Sh(Ω). In
the next theorem, we show that Vk,q

Ω,h is a (k + 1, q)-system.
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Theorem 3.11 Suppose Mh, 0 < h ≤ 1, is a family of particle shape function
systems satisfying A1–A7 and (3.64). Let Ω ⊂ Rn be a bounded domain with
Lipschitz continuous boundary. Then Vk,q

Ω,h is a (k + 1, q)-regular system, where
k is the order of quasi-reproducing shape functions in Mh.

The proof of this theorem is similar to the proof of Theorem 3.6, and will
be omitted.

Remark 3.10 The space Vk,q
Ω,h satisfies the local assumption (LA).

Quasi-Uniform Particle-Shape function System:

We will call a family of particle-shape function systems {Mh}0<h≤1 quasi-
uniform if there is a β, 1 < β < ∞, such that

β−1 ≤ hh
x

hh
y

≤ β, for all x, y ∈ Xh, for all 0 < h ≤ 1. (3.88)

We note that (3.88) is equivalent to

β−1 ≤ h

hh
y

≤ β, for all y ∈ Xh, for all 0 < h ≤ 1, (3.89)

where h is defined by (3.83).

Remark 3.11 We can also define uniform particle-shape function system by
imposing the condition

hh
x = hh

y , for all x, y ∈ Xh, for all 0 < h ≤ 1.

We note that the system with uniformly distributed particles and the associated
shape functions as defined in Section 3.1 is uniform. But uniform particle shape
function systems may have particles that are not uniformly distributed.

Consider a family of particle-shape function systems {Mh}0<h≤1 satisfying
the assumptions A1–A7. Let Ω ⊂ Rn be a bounded domain, and define Ah

Ω =
{x ∈ Xh : η̊h

x ∩Ω}. Suppose Mh satisfies the following additional assumptions:

• Mh is quasi-uniform, i.e., (3.89) holds.

• For all x ∈ Ah
Ω, there is a β > 0 such that, for 0 ≤ s ≤ q,

β−1h
n
2−s ≤ ‖φh

y‖Hs(ωh
x∩Ω) ≤ βh

n
2−s, for all y ∈ Qh

x, (3.90)

where Qh
x = {y ∈ Xh : ηh

y ∩ ωh
x 6= ∅} (cf. A4).
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• For all wy ∈ R, for y ∈ Qh
x, and x ∈ Ah

Ω, there is C > 0, independent of x,
such that

h−s
[ ∑

y∈Qh
x

|wy|2hn
]1/2 ≤ C‖

∑

y∈Qh
x

wyφh
y‖Hs(ωh

x∩Ω), for 0 ≤ s ≤ q. (3.91)

Then the particle space Vk,q
Ω,h satisfies the inverse assumption IA, introduced in

Section 3.2. To see this, consider x ∈ Ah
Ω. Then, using (3.90) and (3.91), we

have

‖
∑

y∈Qh
x

wyφh
y‖Hq(ωh

x∩Ω) ≤
∑

y∈Qh
x

|wy| ‖φh
y‖Hq(ωh

x∩Ω)

≤ Ch
n
2−q

( ∑

y∈Qh
x

|wy|2
)1/2

= Chs−qh−s
( ∑

y∈Qh
x

|wy|2hn
)1/2

≤ Chs−q‖
∑

y∈Qh
x

wyφh
y‖Hs(ωh

x∩Ω), (3.92)

where C depends on κ (cf. A2). Thus

‖
∑

y∈Ah
Ω

wyφh
y‖2Hq(Ω) ≤

∑

x∈Ah
Ω

‖
∑

y∈Qh
x

wyφh
y‖2Hq(ωh

x∩Ω)

≤ Chs−q
∑

x∈Ah
Ω

‖
∑

y∈Qh
x

wyφh
y‖2Hs(ωh

x∩Ω)

≤ Chs−q‖
∑

y∈Ah
Ω

wyφh
y‖2Hs(ωh

x∩Ω).

Since any element g of Vk,q
Ω,h is of the form

∑
y∈Ah

Ω
wyφh

y

∣∣
Ω
, we have shown that

Vk,q
Ω,h satisfies the inverse assumption IA. We summarize the above discussion in

the following theorem:

Theorem 3.12 Suppose Mh, 0 < h ≤ 1, is a family of quasi-uniform particle-
shape function systems satisfying A1–A7, (3.90), and (3.91). Let Ω ⊂ Rn be
a bounded domain with Lipschitz continuous boundary. Then Vk,q

Ω,h satisfies the
inverse assumption IA.

Remark 3.12 We can show that the particle space Vk,q
h also satisfies the inverse

assumption IA, if Mh, satisfying A1–A7, also satisfies (3.90) and (3.91) with
Ω = Rn.

33



4 Construction and Selection of Particle Shape
Functions

In Section 3, we presented an abstract description of particle-shape function
systems with respect to uniform as well as non-uniform distribution of parti-
cles. We showed that if these particle-shape function systems satisfy certain
properties (assumptions A1–A7 and (3.64)), they will have good approximation
properties. In this section we will present an example of a particular particle-
shape function system, where the shape functions are reproducing of order k,
and show that under certain conditions they satisfy assumptions A1–A7, and
hence have good approximation properties. We note that (3.64) is trivially satis-
fied. This example will also show that a wide variety of particle shape functions
can be constructed. Therefore it is important to address the issue of selecting an
appropriate class of shape functions that would yield efficient approximation of
the solution of a particular problem, or a class of problems. We also present an
interpolation result that will indicate a procedure for choosing a class of shape
functions, among a given collection of such classes. Such shape functions will
yield the smallest value of the usual Sobolev norm interpolation error, when the
interpolated function is included in a higher order Sobolev space.

4.1 An Example of a Class of Particle Shape Functions

Several particle shape functions have been developed over the last decade. SPH
shape functions [39] were introduced in the context of fluid dynamics, whereas
Shepard functions [77] and MLS shape functions [53] were introduced in the
context of data fitting with respect to irregularly distributed particles in higher
dimensions. In the 90’s, RKP shape functions were introduced [58] in the context
of approximation of solutions of partial differential equations. In this paper, we
describe the construction of RKP shape functions for non-uniform as well as
uniform distribution of particles, and relate them to the abstract setting given
in Section 3. Specifically, we will show that the resulting particle-shape function
system satisfies assumptions A1–A7.

Non-uniformly distributed particles:

For ν ∈ N , N an index set, let Xν = {xν
i }i∈Z where xν

i ∈ Rn. With
each xν

i ∈ Xν , we associate a positive number hν
i . We consider a fixed ν and

often suppress the superscript ν, e.g., we write xi and hi instead of xν
i and hν

i ,
respectively. We will comment about ν when appropriate.

Let w(x) ≥ 0 be a continuous function with compact support, specifically,

η ≡ supp w(x) = BR(0), R > 0. (4.1)

The function w(x) is called a weight function (or window function).
The commonly used weight functions in 1-d are as follows:
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(a) Gaussian:

w(x) =





eδ(x/R)2 − eδ

1− eδ
, |x| ≤ R

0, |x| ≥ R,
(4.2)

where δ > 0.
(b) Cubic spline:

w(x) =





2
3 − 4(x/R)2 + 4(x/R)3, |x| ≤ R/2

4
3 − 4(x/R) + 4(x/R)2 − 4

3 (x/R)3, R/2 ≤ |x| ≤ R
0, |x| > R.

(4.3)

(c) Conical:

w(x) =
{

[1− (x/R)2]l, |x| ≤ R
0, |x| > R,

(4.4)

where l = 1, 2 . . . . We note that one may consider non-symmetric versions of
some of these weight functions, as was done in [2].

In Rn, w(x) can be constructed from 1-d weight function w(x) (symmetric)
as w(x) = w(‖x‖), where ‖x‖ is the Euclidean length of x. w(x) can also be
constructed as, w(x) =

∏n
j=1 w(jx), where x = (1x, 2x, . . . , nx) ∈ Rn. Conse-

quently, η will be an n−cube. However, we will assume η given by (4.1) in this
section.

For each j, we define

wj(x) = w

(
x− xj

hj

)
. (4.5)

Clearly,
ηj ≡ supp wj(x) = BRhj (xj). (4.6)

Let
Qi = {xj : η̊i ∩ η̊j 6= ∅}, (4.7)

and assume that

∪j∈Z η̊j = Rn, (4.8)
card Qi ≤ κ, for all i ∈ Z, (4.9)

where κ is independent of i and ν.
For a given integer k, k ≥ 0, the RKP shape function φj(x), associated with

the particle xj , is defined by

φj(x) = wj(x)
∑

|α|≤k

(x− xj)αbα(x), (4.10)

where bα(x) are chosen so that
∑

j∈Z
p(xj)φj(x) = p(x), for x ∈ Rn, for p ∈ Pk(Rn), (4.11)

35



so that {φj(x)}j∈Z are reproducing of order k. This gives rise to a linear system
in bα(x); namely

∑

|α|≤k

mα+β(x)bα(x) = δ|β|,0, for |β| ≤ k, (4.12)

where δ|β|,|α| is the Kronecker delta, and

mα(x) =
∑

j∈Z
wj(x)(x− xj)α.

It is clear from (4.6) and (4.10) that

supp φj(x) = supp wj(x) = ηj . (4.13)

We now briefly, describe the derivation of (4.12). For a fixed y ∈ Rn, consider

pβ(x) = (y − x)β , 0 ≤ |β| ≤ k.

Using p(x) = pβ(x) in (4.11) we get
∑

j∈Z
(y − xj)βφj(x) = (y − x)β ,

and letting y = x in the above equality, we have
∑

j∈Z
(x− xj)βφj(x) = δ|β|,0, 0 ≤ |β| ≤ k. (4.14)

Thus (4.11) implies (4.14). In fact, one can also show that (4.14) implies (4.11).
Now using (4.10) in (4.14), we get

δ|β|,0 =
∑

j∈Z
(x− xj)βφj(x)

=
∑

j∈Z
(x− xj)βwj(x)

∑

|α|≤k

(x− xj)αbα(x)

=
∑

|α|≤k

bα(x)
∑

j∈Z
wj(x)(x− xj)α+β

=
∑

|α|≤k

mα+β(x)bα(x), (4.15)

which is (4.12).
We now consider the unique solvability of (4.11). For k = 0, the linear system

(4.12) is m0(x)b0(x) =
[ ∑

i∈Z wi(x)
]
b0(x) = 1. Assuming

∑
i∈Z wi(x) 6= 0, x ∈

Rn, we have b0(x) = 1/m0(x). Therefore from (4.10), we have

φj(x) =
wj(x)∑
i∈Z wi(x)

, j ∈ Z.
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This expression for {φj(x)} gives another verification that they form a parti-
tion of unity. These shape function are called Shepard functions; they were
introduced in [77].

The unique solvability of (4.12), for k ≥ 1, depends on the weight functions
wj ’s and on the distribution of the particles {xi} in Rn. The required distribu-
tion of particles in turn is related to the interpolation problem in Rn. It was
shown in [48] that a necessary condition for unique solvability of (4.12) is that,
for x ∈ Rn,

card A(x) ≥ dim Pk, (4.16)

where
A(x) = {xl : x ∈ ηl}. (4.17)

For k = 1, in was shown in [48] that the linear system (4.12) is non-singular if
the following conditions are satisfied:

(a) There are constants C1, C2 > 0 independent of ν, and h > 0, such that

C1 ≤ hi

h
≤ C2, for all i ∈ Z; (4.18)

(b) There are constants C̃1, C̃2 > 0, independent of ν, such that for any
x ∈ Rn, there are (n + 1) particles xil

∈ A(x), l = 0, . . . , n, such that

min
0≤l≤n

w

(
x− xil

h

)
≥ C̃1 > 0 (4.19)

and
Volume K(xi0 , xi1 , . . . , xin) ≥ C̃2h

n, (4.20)

where K(xi0 , xi1 , . . . , xin) is the simplex with vertices xil
, l = 0, 1, . . . , n.

We will now cast RKP shape functions, discussed above, in the framework
of a particle-shape function system, introduced in Section 3.3. We started with
a collection of particles Xν = {xν

j }j∈Z, where xν
j ∈ Rn, and positive numbers

hν
j . Corresponding to each particle xν

j ∈ Xν , we associated, in (4.10), the RKP
shape function, φν

j = φj with compact support ην
j = ηj = BRhj (xj), where

the parameter R was related to the weight function w(x). It was shown in
[48] that if w(x) ∈ Cq(Rn), then φj ∈ Cq(Rn), and thus φj ∈ Hq(Rn); here
we assume q = 1. We recall that the conditions (4.8), (4.8), (4.16), (4.18)–
(4.20) were required for the construction of shape functions, φj , j ∈ Z. We let
ων

j = ωj ≡ η̊j ; certainly ων
j ’s are bounded domains. We now show that the

family of particle-shape function systems {Mν}ν∈N , where

Mν =
{

Xν , {hν
i , ων

i , φν
i }

}
,

with these choices for φν
i and ων

i , satisfies assumptions A1–A7 in Section 3.3.
We will continue to use the notation, introduced earlier in this section, and
suppress ν; the statements of A1–A7 using this notation should be clear.
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• Since ωi = η̊i for i ∈ Z, assumption A1 follows from (4.8). We also see
that the sets Sν

x ≡ Si and Qν
x ≡ Qi, introduced in assumptions A2 and

A4 are same. Thus A2 follows from (4.9).

• Assumption A3 is immediate from the definition ωi.

• Since ωj = η̊j , the set Ων
x, introduced in assumption A4, is given by

Ων
x = Ωi = ∪xj∈Qi

η̊j . Since ηj ’s are balls of radius Rhj , it is easily seen,
using (4.18), that assumption A4 is satisfied with ρ̄ = 3RC2/C1.

• RKP shape functions, φj , considered here, are reproducing of order k = 1,
i.e., they satisfy (4.11) with k = 1. Thus A5 is satisfied with Aν

x = Ai = I
(identity), for all i ∈ Z, with k = 1.

• It was shown in [48] that if the weight function w(x) ∈ Cq, then

‖φi‖W s,∞(η̊i) ≤ C(hi)−s, for 0 ≤ s ≤ q, for i ∈ Z.

Thus using a scaling argument and this estimate, we obtain

‖φi‖Hs(η̊i) ≤ C(hi)−s+n/2, for 0 ≤ s ≤ q, for i ∈ Z, (4.21)

where h and hi satisfy (4.18). Recall that we assumed q = 1. Now let
xj ∈ Qi. Then

‖φj‖Hs(η̊i) = ‖φj‖Hs(η̊i∩η̊j) ≤ ‖φj‖Hs(η̊j),

and combining this with (4.21), we get, for 0 ≤ s ≤ 1,

‖φj‖Hs(η̊i) ≤ C(hi)−s+n/2, for all xj ∈ Qi, for all i ∈ Z,

which is assumption A6 with q = 1.

• A scaling argument shows that assumption A7 is satisfied.

We remark that (3.61) of Remark 3.4, together with condition (b) (following
(4.18)), establishes a lower bound of κ, namely (n + 1) ≤ κ.

We have thus shown that assumptions A1–A7, with k = 1 and q = 1, are
satisfied by RKP particle-shape function systems provided (4.8), (4.9), (4.16),
(4.18)–(4.20) are satisfied. Thus we can apply Theorem 3.8 to obtain an approx-
imation error estimate for RKP particle-shape function systems. Note that the
condition (3.64) in Theorem 3.8 is trivially satisfied with Aν

x = I for all x ∈ Xν .
We remark that an interpolation error estimate, under the assumptions (4.8),
(4.9), (4.16), (4.18)–(4.20), was also obtained in [48].

We note that A1–A7 only guarantee good approximability of the shape func-
tions; they do not provide a recipe to construct particle shape functions that
are quasi-reproducing or reproducing of order k. In fact the availability of such
particle shape functions is assumed in A5. Further assumptions may be needed
to construct such shape functions; for example (4.16), (4.18)–(4.20) were needed
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to construct RKP particle shape functions. Therefore, there should be enough
restrictions on the particle distributions and the supports of shape functions so
that it is possible to construct these shape functions satisfying A1–A7, thereby
ensuring good approximation properties.

Uniformly distributed particles:

We consider the uniformly distributed particles xh
j = jh, j ∈ Zn as in Section

3.2. This is a special case of the non-uniformly distributed particles considered
in the first part of this section. For each xh

j , we define wh
j (x) = w(x−xh

i

h ), where
w(x) ≥ 0 is a continuous weight function with compact support η = BR(0).
Clearly, ηh

j ≡ supp wh
j (x) = BRh(xh

j ). It can be easily shown that if R = 3
√

n/2
(in fact, we need only R >

√
n), then (4.8), (4.9) with κ = (4R + 1)n, (4.18)

with C1 = C2 = 1, and (4.20) with C̃2 = 1/2 are satisfied. If w(x) = w(r),
with r = ‖x‖, is monotonically decreasing in r, then it also can be easily shown
that (4.19) is satisfied with C̃1 = w(

√
n). Therefore, RKP shape functions

φh
i (x), associated with xh

i , for all i ∈ Zn can be constructed using the procedure
described in (4.10), (4.11) and (4.12) for k = 1, namely

φh
j (x) = wh

j (x)
∑

|α|≤k

(x− xh
j )αbh

α(x), (4.22)

where {bh
α(x)}|α|≤k is the solution of

∑

|α|≤k

mh
α+β(x)bh

α(x) = δ|β|,0, |β| ≤ k, (4.23)

with k = 1, and
mh

α(x) =
∑

j∈Zn

wh
j (x)(x− xh

j )α. (4.24)

Shape functions φh
j ’s satisfy

∑

j∈Zn

p(xh
j )φh

j (x) = p(x), for all x ∈ Rn, for all p ∈ Pk(Rn). (4.25)

As with the non-uniformly distributed particles, we consider the family of
particle-shape function systems

Mh =
{

Xh, {hh
x, ωh

x , φh
x}x∈Xh

}
, 0 < h ≤ 1,

for RKP shape functions with respect to uniformly distributed particles, by let-
ting Xh = {x = xh

j : j ∈ Zn} and using hh
x = h, ωh

x = ηh
j and φh

x = φh
j . Note

that here we used the parameter h instead of ν. We have shown above that
conditions (4.8), (4.9), (4.18)–(4.20) are satisfied, with w(x) = w(r), a mono-
tonically decreasing weight function in r, and R = 3

√
n/2. Therefore, based

on the discussion on RKP particle-shape function systems for non-uniformly
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distributed particles, it clear that {Mh}0<h≤1 satisfies the assumptions A1–A7
with k = 1, ensuring good approximation properties of the RKP shape func-
tions.

We recall that in Section 3.1, the particle shape function φh
i (x) was defined

in (3.1) by scaling and translating the basic shape function φ(x) for uniformly
distributed particles, i.e., they were translation invariant. We will show that the
RKP shape functions {φh

i }i∈Zn , constructed via (4.22) and (4.23), also satisfy
(3.1) with φ(x) = φ1

0(x) (i.e., with i = 0 and h = 1). We assume that the linear
system (4.23) is invertible for k ≥ 1.

From (4.22) and (4.23) with i = 0 and h = 1, we have

φ(x) = w(x)
∑

|α|≤k

xαb1
α(x), (4.26)

where b1
α(x) are the solutions of

∑

|α|≤k

m1
α+β(x)b1

α(x) = δ|β|,0, for |β| ≤ k, (4.27)

and
m1

α(x) =
∑

j∈Zn

w(x− j)(x− j)α. (4.28)

We replace x by x−xh
i

h in (4.27) and (4.28) to get

∑

|α|≤k

m1
α+β(

x− xh
i

h
)bα(

x− xh
i

h
) = δ|β|,0, for |β| ≤ k, (4.29)

where

m1
α(

x− xh
i

h
) =

∑

j∈Zn

w(
x− xh

i

h
− j)(

x− xh
i

h
− j)α

=
∑

j∈Zn

w(
x− xh

i+j

h
)(

x− xh
i+j

h
)α

=
1

h|α|
∑

j∈Zn

wh
j (x)(x− xh

j )α

=
1

h|α|
mh

α(x). (4.30)

Using (4.30) in (4.29), we get

∑

|α|≤k

1
h|α+β|m

h
α+β(x)bα(

x− xh
i

h
) = δ|β|,0,

and therefore,
∑

|α|≤k

mh
α+β(x)

1
h|α|

bα(
x− xh

i

h
) = h|β|δ|β|,0 = δ|β|,0, for all |β| ≤ k. (4.31)
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Since bh
α(x)’s are unique solutions of (4.23), it is clear from (4.31) that

bh
α(x) =

1
h|α|

bα(
x− xh

i

h
),

and thus from (4.26), we have

φ(
x− xh

i

h
) = w(

x− xh
i

h
)

∑

|α|≤k

(
x− xh

i

h
)αbα(

x− xh
i

h
)

= wh
i (x)

∑

|α|≤k

(x− xh
i )α 1

h|α|
bα(

x− xh
i

h
)

= wh
i (x)

∑

|α|≤k

(x− xh
i )αbh

α(x)

= φh
i (x).

Thus, for uniformly distributed particles, RKP shape functions satisfy (3.1),
i.e., they are translation invariant.

Remark 4.1 To approximate functions defined on a bounded domain Ω, we use
the restrictions of RKP shape functions on Ω, as described in Section 3.3 (cf.
(3.86) and Theorem 3.10). We note that the RKP shape functions corresponding
to the particles near the boundary of Ω, as defined here, are different from the
RKP shape functions defined in [48] and [58]. But they are same for particles
inside Ω, sufficiently away from the boundary ∂Ω. They are also same when
Ω = Rn.

4.2 Interpolation and Selection

In this section, we will address the interpolation of a function in terms of particle
shape function, and will propose a procedure to select shape function that will
yield efficient approximation. We consider uniformly distributed particles {xh

j }
in Rn, and the associated particle shape functions {φh

j }, defined in (3.1), where
φ ∈ Hq(Rn) with q ≥ 1 has compact support; supp φ ⊂ BR(0). We have seen
that φh

j ’s are translation invariant, supp φh
j ∈ BRh(xh

j ), and in addition they
satisfy

‖φh
j ‖H1(Rn) ≤ hn/2−1‖φ‖H1(Rn). (4.32)

We assume that {φh
j } are reproducing of order k, i.e., (4.25) holds.

Let Ω be a bounded domain in Rn. We will consider a smooth function u(x)
defined in Ω and study the error u − Ĩhu, where Ĩhu is the “interpolant” of u
in terms of φh

j . The results in this subsection are from [13], and we refer to [13]
for some of the details that we do not present here.

We now define the “interpolant” Ĩhu of a function u. For any x ∈ Rn, let

Ah
x = {k ∈ Zn : x ∈ η̊h

k}
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Ah
x is called the influence set for the point x. Then (Ĩhu)(x) is defined as

(Ĩhu)(x) =
∑

j∈Ah
x

u(xh
j )φh

j (x). (4.33)

In (4.33), we, of course, assume that u(xh
j ) is defined for all j ∈ Ah

x. If p ∈ Pk,
then from (4.25) we have

∑

j∈Ah
x

p(xh
j )φh

j (x) =
∑

j∈Zn

u(xh
j )φh

j (x) = p(x), for all x ∈ Rn, (4.34)

i.e., Ĩhp = p. Now let u ∈ Hs(Ω) with s > n/2. For some x ∈ Ω, the particles
xh

j for j ∈ Ah
x may be outside Ω, and u(xh

j ) may not be defined. To define
Ĩhu(x) for u ∈ Hs(Ω) and for all x ∈ Ω, we need an extension ū of u in a ball
BR0 containing Ω such that dist(∂Ω, ∂BR0) > ρh, and u ∈ Hs(BR0). Then,

(Ĩhu)(x) ≡ (Ĩhū)(x) =
∑

j∈Ah
x

ū(xh
j )φh

j (x), for x ∈ Ω, (4.35)

is well defined. For an extension ū, we may use ū = Eu, where Eu was defined
in (3.51). Thus, (Ĩhu)(x) for x ∈ Ω will depend on few values of ū(xh

j ), where
the particle xh

j is just outside Ω. We remark that Ĩhu is not an interpolant of u

in the usual sense, since, generally, φh
j (xh

i ) 6= δij , and hence (Ĩhu)(xh
j ) 6= u(xh

j ).
We define the function

ξh
α(x) = xα −

∑

i∈Ah
x

(xh
i )αφh

i (x), |α| = k + 1, for x ∈ Rn. (4.36)

We will also use

ξα(x) ≡ ξ1
α(x) = xα −

∑

i∈A1
x

iαφ(x− i), |α| = k + 1, for x ∈ Rn, (4.37)

where A1
x is Ah

x with h = 1. These functions will play an important role in the
analysis presented in this subsection, as well as in Section 5. We note that ξα(x)
is the error between the polynomial xα, with |α| = k + 1, and its interpolant
when h = 1. In 1-d, we will write these functions as ξh

k+1(x) and ξk+1(x)
respectively.

We begin with certain results about these functions. We first present some
notations that will be used in these results. Let Ih

j be the cell centered at xh
j ,

defined by
Ih
j = {x : ‖x− xh

j ‖∞ ≡ max
i=1,...,n

|xi − xji | ≤ h/2}.

For each Ih
j , we define

Ah
j = {k ∈ Zn : η̊h

k ∩ Ih
j 6= ∅},
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and
Bh

j = {∪k∈Ah
j
BRh(xh

k)} ∪ Ih
j .

We note that cardinality of Ah
j is finite, and is bounded independent of j and h.

Also there exists R̄ > 0, independent of j and h, such that Bh
j ⊂ B̃h

j ≡ BR̄h(xh
j )

and ∪j∈ZnB̃h
j = Rn.

Lemma 4.1 ([13]) ξh
α(x), with |α| = k + 1, is periodic, i.e.,

ξh
α(x + xh

j ) = ξh
α(x), for any xh

j . (4.38)

Proof. We first note that

(x + xh
j )α = xα + p(x; xh

j ), (4.39)

where p(x;xh
j ) is a polynomial in x of degree ≤ k with coefficients that depend

on xh
j . Now using (4.39), with x = xh

i , and the fact that the φh
i ’s are translation

invariant and reproducing of order k, we get
∑

i∈Zn

(xh
i )αφh

i (x + xh
j ) =

∑

i∈Zn

(xh
i )αφh

i−j(x)

=
∑

i∈Zn

(xh
i+j)

αφh
i (x)

=
∑

i∈Zn

(xh
i + xh

j )αφh
i (x)

=
∑

i∈Zn

(xh
i )αφh

i (x) +
∑

i∈Zn

p(xh
i ; xh

j )φh
i (x)

=
∑

i∈Zn

(xh
i )αφh

i (x) + p(x, xh
j ). (4.40)

From from (4.36), (4.39) and (4.40), we get

ξh
α(x + xh

j ) = xα −
∑

i∈Zn

(xh
i )αφh

i (x) = ξh
α(x),

which is the desired result.

Lemma 4.2 ([13]) Let α = α(i), i = 1, · · · ,Mk be an enumeration of the
multi-indices α with |α(i)| = k + 1. Let Ih

j be the cell centered at the particle
xh

j . Then, for dα ∈ R, we have

‖
∑

|α|=k+1

1
α!

dαξh
α(x) ‖2H1(Ih

j ) = h2k+nVT (A + h2B)V, (4.41)
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where V = [dα(1), dα(2), . . . , dα(Mk)]T and A,B are Mk ×Mk matrices given by

Alm =
∫

I

1
α(l)!α(m)!

∇ξα(l) · ∇ξα(m) dx, (4.42)

Blm =
∫

I

1
α(l)!α(m)!

ξα(l)ξα(m) dx , (4.43)

respectively, and I = [−1/2, 1/2]n.

Note: The matrices A and B are independent of Ih
j .

Proof. A simple scaling argument, used with (3.1), shows that

ξα

(x

h

)
= h−(k+1)ξh

α(x).

Now, using the periodicity of ξh
α(x), a standard scaling argument, and this

identity, we have

‖
∑

|α|=k+1

1
α!

dα∇ξh
α(x) ‖2H0(Ih

j ) = ‖
∑

|α|=k+1

1
α!

dα∇ξh
α(x) ‖2H0(Ih

0 )

= h2(k+1)‖
∑

|α|=k+1

1
α!

dα∇[ξα

(x

h

)
] ‖2H0(Ih

0 )

= h2(k+1)hn−2‖
∑

|α|=k+1

1
α!

dα∇ξα(y) ‖2H0(I)

= h2k+nVT AV. (4.44)

Using a similar argument, we have

‖
∑

|α|=k+1

1
α!

dαξh
α(x) ‖2H0(Ih

j ) = h2k+2+nVT BV.

Combining this identity with (4.44), we get

‖
∑

|α|=k+1

1
α!

dαξh
α(x) ‖2H1(Ih

j ) = h2k+nVT (A + h2B)V,

which is the desired result.

Lemma 4.3 ([13]) Let Ih
j be the cell centered at the particle xh

j , and consider
the corresponding set B̃h

j . Suppose u ∈ Hk+2+q(B̃h
j ) with q > n

2 when n ≥ 2,
and q = 0 when n = 1. Then,

(a) for any δ > 0,

‖u− Ĩhu‖2H1(Ih
j ) ≤ (1 + δ2)‖

∑

|α|=k+1

1
α!

(Dαu)(xh
j )ξh

α(x)‖2H1(Ih
j )

+(1 +
1
δ2

)Ch2k+2
∑

|α|=k+2

‖Dαu‖2
Hq(B̃h

j )
. (4.45)
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and
(b) for any δ > 0,

‖
∑

|α|=k+1

1
α!

(Dαu)(xh
j )ξh

α(x)‖2H1(Ih
j ) ≤ (1 + δ2)‖u− Ĩhu‖2H1(Ih

j )

+(1 +
1
δ2

)Ch2k+2
∑

|α|=k+2

‖Dαu‖2
Hq(B̃h

j )
.

(4.46)

The proof of this result is based on Taylor’s Theorem, a bound on the remain-
der in Taylor’s Theorem, and a bound on the interpolant of the same remainder.
We do not include the proof here, and refer to [13].

We will now study the interpolation error u−Ĩhu, where u is a smooth func-
tion in Ω. An interpolation error estimate, namely ‖u−Ĩhu‖H1(Ω) ≈ O(hk), was
proved in [48, 59] for the RKP shape functions. A similar order of convergence
in the H1,∞ norm was also obtained for MLS shape functions in [1, 2]. We
note that the definitions of Ĩhu for the RKP shape functions and MLS shape
functions, presented in these papers, are slightly different from our definition
as given in (4.35). From the proof of the our next result, we will obtain an
estimate of ‖u − Ĩhu‖H1(Ω) where the shape functions shape functions are re-
producing of order k. Moreover, this theorem gives some information on the

size of
‖u−Ĩhu‖H1(Ω)

hk , which facilitates the selection of “good” shape functions,
which will be discussed later.

We now present the main result of this section. We define certain sets, which
will be used in this result:

Āh = {k ∈ Zn : Ω ∩ I̊h
k 6= ∅}, Ω̄h = ∪j∈ĀhIh

j ,

Ah = {k ∈ Zn : Ih
k ⊂ Ω}, Ωh = ∪j∈AhIh

j ,

Bh = {∪j∈AhB̃h
j } ∪ Ω, B̄h = ∪j∈ĀhB̃h

j .

It is clear that Ωh ⊂ Ω ⊂ Ω̄h, and |Ω− Ωh| → 0, |Ω̄h − Ω| → 0 as h → 0. Also
Ω ⊂ Bh ⊂ B̄h, and |Bh − Ω| → 0, |B̄h − Ω| → 0 as h → 0.

Theorem 4.1 ([13]) Let λ̄ be the largest eigenvalue of the matrix A given in
(4.42). Suppose q > n

2 when n ≥ 2, and q = 0 when n = 1. Then, we have

sup
u∈Hk+2+q(Ω)

lim
h→0

‖u− Ĩhu‖2H1(Ω)

h2kQh(u)
= λ̄, (4.47)

where
Qh(u) = |u|2Hk+1(Ω) + h

∑

|α|=k+2

‖Dαu‖2Hq(Ω). (4.48)
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Note: In (4.47), we consider u ∈ Hk+2+q(Ω) such that u /∈ Pk.
Proof. We will first prove that for u ∈ Hk+2+q(Ω),

lim
h→0

‖u− Ĩhu‖2H1(Ω)

h2kQh(u)
=

∫
Ω

V T (x)AV (x) dx

|u|2
Hk+1(Ω)

, (4.49)

where
V T (x) = [Dα(1)u(x), Dα(2)u(x), . . . , Dα(Mk)u(x)],

and α(i), 1 ≤ i ≤ Mk, are the multi-indices with |α(i)| = k + 1.
Let u ∈ Hk+2+q(Ω), and suppose ū is an extension of u, as discussed before.

Since, Ω ⊂ Ω̄h, we have

‖u− Ĩhu‖2H1(Ω) ≤ ‖ū− Ĩhū‖2H1(Ω̄h) =
∑

j∈Āh

‖ū− Ĩhū‖2H1(Ih
j ).

Therefore, using (4.45), (4.41), and recalling that B̄h = ∪j∈ĀhB̃h
j , we get for

any δ > 0,

‖u− Ĩhu‖2H1(Ω) ≤ (1 + δ2)
∑

j∈Āh

‖
∑

|α|=k+1

1
α!

(Dαū)(xh
j )ξh

α(x)‖2H1(Ih
j )

+(1 +
1
δ2

)Ch2k+2
∑

j∈Āh

∑

|α|=k+2

‖Dαū‖2
Hq(B̃h

j )

≤ (1 + δ2)h2k
∑

j∈Āh

hnV T
j (A + h2B)Vj

+(1 +
1
δ2

)Ch2k+2
∑

|α|=k+2

‖Dαū‖2Hq(B̄h), (4.50)

where
V T

j = [Dα(1)ū(xh
j ), Dα(2)ū(xh

j ), . . . , Dα(Mk)ū(xh
j )].

Therefore, dividing (4.50) by h2kQh(u), where Qh(u) is defined in (4.48), we get

‖u− Ĩhu‖2H1(Ω)

h2kQh(u)
≤ (1 + δ2)

∑
j∈Āh hnV T

j (A + h2B)Vj

Qh(u)

+ (1 +
1
δ2

)Ch2

∑
|α|=k+2 ‖Dαū‖2

Hq(B̄h)

Qh(u)
. (4.51)

A typical term of the quadratic form V T
j (A + h2B)Vj is

Dα(i)ū(xh
j )(Ail + h2Bil)Dα(l)ū(xh

j ).

Since

lim
h→0

∑

j∈Āh

hnDα(i)ū(xh
j )AilD

α(l)ū(xh
j ) =

∫

Ω

Dα(i)u(x)AilD
α(l)u(x) dx
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and
lim
h→0

h2
∑

j∈Āh

hnDα(i)ū(xh
j )BilD

α(l)ū(xh
j ) = 0,

we have
lim
h→0

∑

j∈Āh

hnV T
j (A + h2B)Vj =

∫

Ω

V T (x)AV (x) dx. (4.52)

Since |B̄h − Ω| → 0 as h → 0, we have

lim
h→0

∑

|α|=k+2

‖Dαū‖2Hq(B̄h) =
∑

|α|=k+2

‖Dαu‖2Hq(Ω). (4.53)

Also limh→0 Qh(u) = |u|Hk+1(Ω). Thus, for any δ > 0, using (4.52) and (4.53)
in (4.51), we get

lim sup
h→0

‖u− Ĩhu‖2H1(Ω)

h2kQh(u)
≤ (1 + δ2)

∫
Ω

V T (x)AV (x) dx

|u|2
Hk+1(Ω)

,

and, since δ > 0 is arbitrary, we have

lim sup
h→0

‖u− Ĩhu‖2H1(Ω)

h2kQh(u)
≤

∫
Ω

V T (x)AV (x) dx

|u|2
Hk+1(Ω)

. (4.54)

Following the argument leading to (4.54), but using Ah, Bh, and (4.46) instead
of Āh, B̄h, and (4.45), respectively, we can also show that

∫
Ω

V T (x)AV (x) dx

|u|2
Hk+1(Ω)

≤ lim inf
h→0

‖u− Ĩhu‖2H1(Ω)

h2kQh(u)
. (4.55)

Combining (4.54) and (4.55), we see that limh→0

‖u−Ĩhu‖2
H1(Ω)

h2kQh(u)
exists, and

lim
h→0

‖u− Ĩhu‖2H1(Ω)

h2kQh(u)
=

∫
Ω

V T (x)AV (x) dx

|u|2
Hk+1(Ω)

,

which is (4.49).
Since λ̄ is the largest eigenvalue of the matrix A, from the usual variational

characterization of eigenvalues, we have

∫

Ω

V T (x)AV (x) dx ≤ λ̄

∫

Ω

Mk∑

i=1

|Dα(i)u(x)|2 dx = λ̄|u|2Hk+1(Ω).

Thus from (4.49) we get

lim
h→0

‖u− Ĩhu‖2H1(Ω)

h2kQh(u)
≤ λ̄, for any u ∈ Hk+2+q(Ω).
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Hence

sup
u∈Hp+2+q(Ω)

lim
h→0

‖u− Ĩhu‖2H1(Ω)

h2kQh(u)
≤ λ̄. (4.56)

Let v̄ = [v1, v2, · · · , vMk
]T be an eigenvector of A corresponding to λ̄. Then it

is easily seen that there is a u ∈ Pk+1 such that the vector V (x) = v̄. For this
particular u, we have ∫

Ω
V T (x)AV (x) dx

|u|2
Hk+1(Ω)

= λ̄.

Hence, from (4.56) we conclude that

sup
u∈Hk+2+q(Ω)

lim
h→0

‖u− Ĩhu‖2H1(Ω)

h2kQh(u)
= λ̄,

which is the desired result.

Remark 4.2 We know from (4.35) that the interpolant of a smooth function
depends on its extension to Rn. But it is clear from the proof of Theorem 4.1
that (4.47) is valid for any extension satisfying (3.51).

Remark 4.3 We note that same result holds for the H1-seminorm of the in-
terpolation error, i.e., for q > n

2 when n ≥ 2, and q = 0 when n = 1, we
have

sup
u∈Hk+2+q(Ω)

lim
h→0

|u− Ĩhu|2H1(Ω)

h2k[|u|2
Hk+1(Ω)

+ h
∑
|α|=k+2 ‖Dαu‖2Hq(Ω)]

= λ̄

Remark 4.4 From (4.51) in the proof of Theorem 4.1, we can obtain an inter-
polation error estimate,

‖u− Ĩhu‖H1(Ω) ≤ Chk‖u‖Hk+2+q(Ω),

where C may depend on Ω, but is independent of u and h. We note however,
that this is not the optimal error estimate. For an outline of the proof, see [13].

We have seen in Remark 4.4 that if the particle shape functions are repro-
ducing of order k, then for a smooth function u,

‖u− Ĩhu‖H1(Ω) ≈ O(hk),

where Ĩhu is the interpolation of u as defined in (4.35). There are many classes
of shape functions that have these properties. We have seen in Section 4.1
that translation invariant RKP shape functions depend on the weight function
w(x), and different choices of w(x) will generate different classes of such shape
functions.
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We will assess the aproximability of a family {φh
j } of shape functions by

the size of λ̄, the largest eigenvalue of the matrix A defined in (4.42). We note
that λ̄ is computable, and depends only on the basic shape function φ(x). We
emphasize that λ̄ does not depend on u or on h. From (4.47), we know that

‖u− Ĩhu‖H1(Ω)

hp
√

Qh(u)
/

√
λ̄, for small h.

Thus we see that λ̄ is a useful measure of the approximabilty of the family {φh
j },

determined from the basic shape function φ(x).
We will illustrate our selection scheme in 1-d, and will rank the shape

functions according to to their approximability. We note that in 1-d, λ̄ =
(
|ξk+1|H1(0,1)

(k+1)! )2. In the rest of this paper, we will suppress H1(0, 1) in |ξk+1|H1(0,1),
and instead write |ξk+1|1.

We considered four different classes of RKP shape functions, reproducing of
order 1, corresponding to four different weight functions w(x). These w(x)’s
were (4.2) with δ = 2, (4.3), and (4.4) with l = 2, 4. We then computed |ξk+1|1
for each of these four classes of shape functions for R = 1.7; we obtained

|ξk+1|1 =





0.237, for w(x) in (4.4), l = 2
0.203, for w(x) in (4.2), δ = 2
0.095, for w(x) in (4.3)
0.029, for w(x) in (4.4), l = 4

We choose the RKP shape functions corresponding to w(x) given in (4.4) with
l = 4, since these shape functions yield the smallest value of |ξk+1|1. We note
that the value of |ξk+1|1 depends strongly on R, and the shape function cor-
responding to w(x) given in (4.4) with l = 4 may not be our choice for other
values of R. We refer to [13] for futher discussion on this issue.

To validate our criterion of selection of the shape functions, we have con-
sidered the function u(x) = x4 on the interval Ω = (0, 1) and computed the
error |u − Ĩhu|H1(Ω). Ĩhu is the interpolant of u with respect to the four
classes of RKP shape functions described in the last paragraph, with h = 1/n,
n = 40, 50, . . . , 100. We note that the definition of Ĩhu requires the values of
u(x) in a small neighborhood of Ω, and we have extended u = x4 outside Ω by
itself. We summarize the results in the following table.
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|u− Ĩhu|H1(Ω)
n

Conical: l = 2 Gauss: δ = 2 Cubic Spline Conical: l = 4

40 1.607e-2 1.376e-2 6.435e-3 2.283e-3

50 1.281e-2 1.096e-2 5.130e-3 1.730e-3

60 1.066e-2 9.112e-3 4.267e-3 1.396e-3

70 9.126e-3 7.800e-3 3.653e-3 1.172e-3

80 7.980e-3 6.819e-3 3.194e-3 1.012e-3

90 7.090e-3 6.058e-3 2.838e-3 8.908e-4

100 6.379e-3 5.449e-3 2.553e-3 7.962e-4

Table 4.1: The H1-seminorm of the error, |u − Ĩhu|H1(Ω), where Ĩhu is the

interpolant of u(x) = x4 using RKP shape functions that are reproducing

of order 1, corresponding to different weight functions w(x). The radius of

support of ω(x) is R = 1.7.

From Table 4.1, it is clear that the error |u − Ĩhu|H1(Ω) can be ranked
according to the size of |ξ2|1 for the four choices of ω(x) considered here with
R = 1.7; the error and |ξ2|1 are both minimal when w(x) is the conical weight
function with l = 4.

This selection scheme is based on (4.47), and we know from Remark 4.2 that
(4.47) is valid for any extension. We refer to [13] for an experimental illustration
of this fact. We remark that this selection scheme is also valid for the projection
error, which will be indicated by our results in the next section.

5 Superconvergence of the gradient of the solu-
tion in L2

Superconvergence is an important feature of finite element methods, which al-
lows an accurate approximation of the derivatives of the solution of the under-
lying BVP. In this section, we will discuss the idea of superconvergence when
particle shape functions are used to approximate the solution of a BVP. We will
consider uniformly distributed particles and the associated particle shape func-
tions, which were developed in Sections 3.1 and 3.2. For uniformly distributed
particles, a careful analysis in 1-d can be easily generalized to higher dimen-
sions. Thus, in this section, we present the results in 1-d, but by restricting our
analysis to 1-d, we avoid some details that arise in higher dimensional analysis.

We will use the notation that was introduced in Section 3.1, but restricted
to 1-d, i.e., for h > 0, we consider xh

j = jh, j ∈ Z, and the corresponding
shape function φh

j defined in (3.1). We assume that the shape functions are
reproducing of order k. We use the following notation:

Ih
j = (xh

j , xh
j+1), Ah

j = {m ∈ Z : ηh
m ∩ Ih

j 6= ∅};
Ij = (j, j + 1), Aj ≡ A1

j (with h = 1).
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We assume that
card(Aj) ≤ κ,

or equivalently,
card(Ah

j ) ≤ κ,

where κ is independent of j and h. We assume that the basic shape function
φ(x) is such that, for any v(x) =

∑
i∈Z ciφi(x) for x ∈ I0, there exist positive

constants C1, C2, independent of v, but may depend on κ, such that

C1

∑

j∈A0

c2
i ≤

∫

I0

v2 dx ≤ C2

∑

j∈A0

c2
i . (5.1)

This implies that the functions {φi(x)}i∈A0 are linearly independent in I0, i.e.,
∑

j∈A0

cjφj(x) = 0, x ∈ I0 implies cj = 0, j ∈ A0.

Throughout this section, we use C, C1, C2 as generic constants, which will have
different values in different places.

Consider Ω = (−c, d) ⊂ R. Let u0 ∈ H1(Ω) be the solution of the Neumann
problem

B(u0, v) = F(v), for all v ∈ H1(Ω) (5.2)

where
B(u, v) =

∫

Ω

(u′v′ + uv) dx and F(v) =
∫

Ω

fv dx

as in (2.4) and (2.5). We will often use the notation BF (u, v) to denote the
above bilinear form, where the Ω is replaced by another domain F .

Let uh ∈ V k,q
Ω,h be the solution of

B(uh, v) = F(v), for all v ∈ V k,q
Ω,h, (5.3)

where V k,q
Ω,h was defined in (3.55). It is clear from(5.2) and (5.3) that

B(u0 − uh, v) = 0, for all v ∈ V k,q
Ω,h, (5.4)

and we easily have
‖uh‖H1(Ω) ≤ ‖u0‖H1(Ω). (5.5)

Recall that the functions in V k,q
Ω,h are restrictions of the functions in Sh ≡ V k,q

h

on Ω (cf. (3.2) and (3.55)). Thus (5.4) is true when V k,q
Ω,h is replaced by Sh.

We assume that for any ρ > 0,

‖u0 − uh‖L2(Bρ(0)) ≤ Chk+1‖u0‖Hk+1(Ω)ρ
1
2 , (5.6)

and there are positive constants C1, C2, independent of u, h, and ρ, such that

C1h
kρ

1
2 ≤ ‖u′0 − u′h‖L2(Bρ(0))

‖u0‖Hk+1(Ω)

≤ C2h
kρ

1
2 , (5.7)
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where Bρ(0) = {x : |x| < ρ} and Bρ(0) ⊂ Ω. We will write Bρ ≡ Bρ(0) through
out this section.

The main goal of this section is to investigate the error u′(x) − u′h(x) in a
neighborhood of x = 0, i.e., for x ∈ BH ⊂⊂ Ω and H = hγ , γ < 1, where γ will
be chosen later. We will prove the following result:

Theorem 5.1 Suppose u0 and uh satisfy (5.6) and (5.7), and let eh = u0−uh.
Moreover, assume that u0 ∈ W k+2

∞ (B2H). Then for h small enough, there exists
ε∗ > 0, such that

‖e′h − T (u0)ξh
k+1

′‖L2(BH)

‖e′h‖L2(B2H)
≤ Chε∗

where T (u0) = u
(k+1)
0 (0)
(k+1)! and ξh

k+1(x) = hk+1ξk+1(x
h ); ξk+1 is defined in (4.37).

Remark 5.1 Theorem 5.1 is a superconvergence result. It shows that

‖e′h − T (u0)ξh
k+1

′‖L2(BH) << ‖e′h‖L2(BH).

This allows one, for example, to analyze the effectiveness of an error estimator
as was done in [19].

Since the all the results in this paper have been presented in terms of L2

based norms (i.e., in terms of the usual Sobolev norms), we also present this
result in terms of L2 based norm. Superconvergence in L∞ will be addressed in
a forthcoming paper. Assuming superconvergence in L∞, the superconvergence
points and superconvergence recoveries in the case of particle shape functions
can be obtained analogously as in [19]. At the end of this section, we will see
an example where the superconvergence points are distributed differently than
in the classical FEM.

Remark 5.2 The essential aspects of superconvergence analysis in the classical
FEM are interior estimates, developed in [71], [75], [88]. This analysis strongly
utilizes the polynomial character of the shape functions. Here, in the case of
particle shape functions, we had to develop another approach to the analysis
of superconvergence, which is based on weighted Sololev spaces. The main
idea of the proof of our superconvergence result is to show that locally, the
approximation error is asymptotically same as the error in the interpolation
of a polynomial of degree k + 1 by particle shape functions. The analysis is
technical; we present the main idea of this analysis in this section.

Remark 5.3 Assumptions (5.6) and (5.7) are directly related to the control of
pollution, as in FEM. The assumption that u0 ∈ W k+1

∞ (Bρ) is analogous to the
assumption in FEM (see [19]).
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To prove Theorem 5.1, we will first develop certain ideas and establish many
technical results. Towards this end, for given parameters H = hγ , with γ < 1,
and α ≥ 1, we define the function g(x) by

g(x) =





1, −H ≤ x ≤ H
e−α(x−H), x > H
eα(H+x), x < −H.

(5.8)

where α is such that αh < 1, and will be chosen later. We note that a proper
choice of γ and α is crucial for the analysis presented in this section. Often, we
will use g ≡ g(x), gi ≡ g(xh

i ) and gi+ 1
2
≡ g(xh

i + h/2).

Generalized Interpolant and certain norm estimates:

We first introduce the idea of generalized interpolant of a function u, which
is different than Ĩhu defined in Section 4.2. Let Ĩ0 ≡ I−1 ∪ I0 ∪ {0} = (−1, 1)
and Ã0 ≡ A−1∪A0. Then from (5.1), it is clear that there are positive constants
C1, C2, independent of v =

∑
i∈Z ciφi(x), but may depend on κ, such that

C1

∑

j∈Ã0

c2
i ≤

∫

Ĩ0

v2 dx ≤ C2

∑

j∈Ã0

c2
i , (5.9)

which implies that {φi(x)}i∈Ã0
are also linearly independent in Ĩ0. We define

ψ0(x) =
∑

i∈Ã0
aiφi(x) with supp ψ0 = Ĩ0 (closure of Ĩ0), such that
∫

Ĩ0

ψ0(x)φ0(x) dx = 1,

∫

Ĩ0

ψ0(x)φj(x) dx = 0, for all j ∈ Ã0, j 6= 0. (5.10)

Using (5.9), we can show that

‖ψ0‖L2(Ĩ0)
≤ C. (5.11)

We also note that, since {φi(x)}i∈Ã0
form a partition unity on Ĩ0, from (5.10)

we have
∫

Ĩ0

ψ0(x) dx =
∫

Ĩ0

ψ0(x)
∑

i∈Ã0

φi(x) dx =
∫

Ĩ0

ψ0(x)φ0(x) dx = 1. (5.12)

Let ψh
i (x) = ψ0(x

h − i). Then supp ψh
i = Ĩh

i , where Ĩh
i = (xh

i−1, x
h
i+1).

Note that ∪i∈Z Ĩh
i = R. Now for a given v ∈ L2(R). we define the generalized

interpolant of v as
Ĩ∗hv(x) =

∑

i∈Z
Ψh

i (v)φh
i (x), (5.13)
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where
Ψh

i (v) =
1
h

∫

Ĩh
i

ψh
i (x)v(x) dx. (5.14)

We note that Ĩ∗hv(x) depends on the v(y) for y ∈ ∪i∈Ah(x)Ĩ
h
i , where Ah(x) =

{l ∈ Z : x ∈ ηh
l }. We also define

Ãh
i = {m ∈ Z : ηh

m ∩ Ĩh
i 6= ∅}.

Lemma 5.1 Suppose v(x) =
∑

i∈Z ch
i φh

i (x). Then

ch
i = Ψh

i (v) (5.15)
and Ĩ∗hv(x) = v(x). (5.16)

Proof. From (5.10) and the definition of Ψh
i (v) in (5.14), i ∈ Z, we have

Ψh
i (v) =

1
h

∫

Ĩh
i

ψh
i (x)v(x) dx

=
1
h

∫

Ĩh
i

ψ0(
x

h
− i)

∑

j∈Ãh
i

ch
j φ(

x

h
− j) dx

=
∫

Ĩ0

ψ0(y)
∑

j∈Ãh
i

ch
j φj−i(y) dy

= ch
i ,

which is (5.15). Now using (5.15) in (5.13). we get (5.16).

Remark 5.4 We note that if v is a linear combination of φh
i ’s only locally,

i.e., in a bounded open interval, then Ĩ∗hv = v only in the interior of that open
interval. More precisely, Ĩ∗hv = v in an interval I if v is a linear combination of
φi’s in ∪x∈I ∪i∈Ah(x) Ĩh

i .

We will use the following result later.

Lemma 5.2 Let Ω be a bounded interval, and suppose u ∈ L2(Ω). Then

‖Ĩ∗hEu‖H1(R) ≤ Ch−1‖u‖L2(Ω)

where E is the extension operator satisfying (3.51).

Proof. We first note that the extension Eu of u satifies ‖Eu‖L2(R) ≤
C‖u‖L2(Ω). Now, from (5.13) and (4.32)

‖Ĩ∗hEu‖2
H1(Ĩh

i )
≤ C

∑

j∈Ãh
i

|Ψh
j (Eu)|2 ‖φh

j ‖2H1(η̊j)

≤ Ch−1
∑

j∈Ãh
i

|Ψh
j (Eu)|2, (5.17)
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where C depends on κ; and using Schwartz inequality on (5.14) with v = Eu,
and a scaling argument, we get

|Ψh
j (Eu)|2 ≤ 1

h2

(∫

Ĩh
j

ψh
j (x)Eu(x) dx

)2

≤ 1
h2

[
∫

Ĩh
j

(ψh
j )2 dx][

∫

Ĩh
j

(Eu)2 dx]

≤ 1
h
‖ψ0‖2L2(Ĩ0)

[
∫

Ĩh
j

(Eu)2 dx]. (5.18)

Thus, from (5.17), (5.18), and the fact that ‖Eu‖L2(R) ≤ C‖u‖L2(Ω) we have

‖Ĩ∗hEu‖2H1(R) ≤ Ch−2‖u‖2L2(Ω),

which is the desired result.

Remark 5.5 We can also show that

‖Ĩ∗hEu‖L2(R) ≤ C‖u‖L2(Ω)

using the same arguments as in the proof of Lemma 5.2.

Consider the function v(x) =
∑

i∈Ah
j

ch
i φh

i (x) on Ih
j . Then, using scaling,

translation, and (5.1), we have

C1h
∑

j∈Ah
j

(ch
i )2 ≤

∫

Ih
j

v2 dx ≤ C2h
∑

j∈Ah
j

(ch
i )2, (5.19)

where C1, C2 are positive constants, independent of h and j, but may depend
on κ. Using (5.19), we can show that if v(x) =

∑
i∈Z ch

i φh
i (x) = 0 in L2, then

ch
i = 0, for all i ∈ Z, i.e., {φh

i } are linearly independent.
We will now prove certain lower bounds for

∫
Ih

j
gv2 dx and

∫
Ih

j
gv′2 dx, where

g(x) has been defined before. We first prove the following inequality.

Lemma 5.3 Let i0, i1 be integers such that i0 < i1, and suppose {ci}i1
i=i0

are
real numbers. Then there exists a positive constant C, depending only on i1−i0,
such that for any k, i0 ≤ k ≤ i1, we have

i1∑

i=i0

gi+ 1
2
(ci − ck)2 ≤ C

i1−1∑

i=i0

gi+ 1
2
(ci+1 − ci)2. (5.20)

Proof. Suppose the integers i0, i1 are such that H < i0h < i1h, where H =
hγ , γ < 1. Then

i1∑

i=i0

gi+ 1
2
(ci − ck)2 =

k−1∑

i=i0

gi+ 1
2
(ci − ck)2 +

i1∑

i=k+1

gi+ 1
2
(ci − ck)2. (5.21)
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We first note that

i1∑

i=k+1

gi+ 1
2
(ci − ck)2

≤ C

i1∑

i=k+1

i−1∑

j=k

gi+ 1
2
(cj+1 − cj)2

= C

i1∑

i=k+1

i−1∑

j=k

(
1 +

gi+ 1
2
− gj+ 1

2

gj+ 1
2

)
gj+ 1

2
(cj+1 − cj)2. (5.22)

But from the definition of g(x) in (5.8), we have

(1 +
gi+ 1

2
− gj+ 1

2

gj+ 1
2

) ≤ e−α(i−j)h ≤ eα(i1−i0)h ≤ C, (5.23)

and using this in (5.22), we get

i1∑

i=k+1

gi+ 1
2
(ci − ck)2 ≤ C

i1∑

i=k+1

i−1∑

j=k

gj+ 1
2
(cj+1 − cj)2

≤ C

i1−1∑

j=k

gj+ 1
2
(cj+1 − cj)2, (5.24)

where C depends on (i1 − i0).
Using similar arguments we can show that

k−1∑

i=i0

gi+ 1
2
(ck − ci)2 ≤ C(k − 1− i0)

k−1∑

j=i0

gj+ 1
2
(cj+1 − cj)2, (5.25)

where C depends on (i1 − i0). Therefore, combining (5.21), (5.24), and (5.25)
we have

i1∑

i=i0

gi+ 1
2
(ci − ck)2 ≤ C

i1∑

i=i0

gj+ 1
2
(cj+1 − cj)2, (5.26)

where C depends on (ii− i0). Using similar arguments, we can prove (5.26) for
all integers i0, i1 such that i0 < i1.

Lemma 5.4 Suppose v(x) =
∑

i∈Z ch
i φh

i (x). Then
(a) there are positive constants C1, C2, independent of v, h and j, but may

depend on κ, such that

C1h
∑

i∈Ah
j

gi(ch
i )2 ≤

∫

Ih
j

gv2 dx ≤ C2h
∑

i∈Ah
j

gi(ch
i )2; (5.27)
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(b) there is a positive constant C, independent of v and h, such that

1
h

∑

i∈Zn

gi+ 1
2
(ch

i+1 − ch
i )2 ≤ C

∫

R
gv′2 dx. (5.28)

Proof. (a) Consider j ∈ Z and the corresponding Ah
j such that, for i ∈ Ah

j ,
H < xh

i . Let gM = maxi∈Ah
j

g(xh
i ) and gm = mini∈Ah

j
g(xh

i ). Then, it is easy to
check that gM

gm
≤ C, where C depends κ. Now, using (5.19), we have

h
∑

i∈Ah
j

gi(ch
i )2 ≤ gMh

∑

i∈Ah
j

(ch
i )2

≤ gM

C1gm

∫

Ih
j

gv2 dx

≤ C

∫

Ih
j

gv2 dx. (5.29)

Using a similar argument, we get
∫

Ih
j

gv2 dx ≤ C
∑

i∈Ah
j

gi(ch
i )2.

Combining the above with (5.29) gives the required result. Using similar argu-
ments, we can prove (5.27) for any j ∈ Z.

(b) Let u =
∑

i∈Z ciφi(x). Then from (5.14) and (5.15) with h = 1, we have

ci = Ψ1
i (u) =

∫ i+1

i−1

ψ1
i (x)u(x) dx, (5.30)

and therefore,

ci+1 − ci =
∫ i+2

i

ψ1
i+1(x)u(x) dx−

∫ i+1

i−1

ψ1
i (x)u(x) dx

=
∫ i+2

i−1

(ψ1
i+1(x)− ψ1

i (x))u(x) dx. (5.31)

Let F (x) =
∫ x

i−1
[ψ1

i+1(t) − ψ1
i (t)] dt. Using translation and (5.12), it is easily

seen that ∫ i+1

i−1

ψ1
i (t) dt =

∫ i+2

i

ψ1
i+1(t) dt = 1,

and therefore, F (i− 1) = F (i+2) = 0. Also, using the Schwartz inequality and
(5.11), we can show that ∫ i+2

i−1

F 2 dx ≤ C.
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Now, using the above bound, integrating (5.31) by parts, and using the Schwartz
inequality, we get

(ci+1 − ci)2 = (
∫ i+2

i−1

Fu′ dx)2 ≤ C

∫ i+2

i−1

u′2 dx. (5.32)

Let v =
∑

i∈Z ch
i φh

i (x). Then by a standard scaling argument, we have

∫ xh
i+2

xh
i−1

(v′(x))2 dx =
1
h

∫ i+1

i−1

(u′(y))2 dy, (5.33)

where u(y) =
∑

i∈Z ch
i φi(y). Therefore, from (5.32) and (5.33) we have

1
h

(ch
i+1 − ch

i )2 ≤ C

∫ xh
i+2

xh
i−1

v′2 dx. (5.34)

From the definition of g(x), we can show that for x ∈ (xh
i−1, x

h
i+2),

(1 + gi+1/2−g(x)

g(x) ) ≤ C. Therefore,

1
h

gi+ 1
2
(ch

i+1 − ch
i )2 ≤ C

∫ xh
i+2

xh
i−1

gv′2(1 +
gi+ 1

2
− g

g
) dx

≤ C

∫ xh
i+2

xh
i−1

gv′2 dx,

and hence,

1
h

∑

i∈Z
gi+ 1

2
(ch

i+1 − ch
i )2 ≤ C

∑

i∈Z

∫ xh
i+2

xh
i−1

gv′2 dx ≤ C

∫

R
gv′2 dx,

which is the required result.

Remark 5.6 We note that it is possible to show that
∫

R
gv′2 dx ≤ C

1
h

∑

i∈Zn

gi+ 1
2
(ch

i+1 − ch
i )2,

and together with (5.28) we see that 1
h

∑
i∈Zn gi+ 1

2
(ch

i+1 − ch
i )2 is equivalent to

|v|2H1(R). The proof of this fact is easier than the proof of (5.28), and we do got
provide the proof here.

A perturbed bilinear form BΘ(u, v) and related results:

For a given Θ ≥ 1, we now consider the bilinear form

BRΘ(u, v) ≡ BR(u, v) + ΘDR(u, v),
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where
BR(u, v) =

∫

R
(u′v′ + uv) dx and DR(u, v) =

∫

R
uv dx.

We will write BΘ(u, v) ≡ BRΘ(u, v), but will use BF
Θ(u, v) when the domain of

integration is F instead of R. Also we will use DF (u, v), where R is replaced by
a domain F in the definition of DR(u, v).

Let H1
g,Θ and H1

g−1,Θ be Hilbert spaces defined as

H1
g,Θ = {u : ‖u‖21,g,Θ ≡

∫

R
gu′2 dx + (1 + Θ)

∫

R
gu2 dx < ∞};

H1
g−1,Θ = {u : ‖u‖21,g−1,Θ ≡

∫

R
g−1u′2 dx + (1 + Θ)

∫

R
g−1u2 dx < ∞}.

We will choose Θ later. The choice of Θ, along with the choices of γ and α,
mentioned before, is important for the main result of this section. We assume
that α2

Θ̄
< 1 where Θ̄ = 1 + Θ.

We will often suppress Θ in ‖u‖1,g,Θ and ‖u‖1,g−1,Θ and instead write ‖u‖1,g

and ‖u‖1,g−1 respectively. We will also use the fact that |g′/g| ≤ α, which is
obvious from the definition of g(x).

Remark 5.7 The space H1
g,Θ is directed towards obtaining interior estimates

of e′h, i.e., e′h is locally characterized through the use of the space Hg,Θ.

We now consider BΘ(·, ·) : H1
g,Θ ×H1

g−1,Θ → R.

Lemma 5.5 The bilinear form BΘ(·, ·) is bounded on H1
g,Θ ×H1

g−1,Θ, i.e.,

BΘ(u, v) ≤ C‖u‖1,g‖v‖1,g−1 , for all u ∈ H1
g,Θ, v ∈ H1

g−1,Θ.

Proof. Let u ∈ H1
g,Θ and v ∈ H1

g−1,Θ. Then

BΘ(u, v) =
∫

R
[u′v′ + (1 + Θ)uv] dx

=
∫

R
[g1/2u′g−1/2v′ + (1 + Θ)1/2g1/2u(1 + Θ)1/2g−1/2v] dx

≤ C
[ ∫

R
(gu′2 + (1 + Θ)gu2) dx

]1/2[ ∫

R
(g−1v′2 + (1 + Θ)g−1v2) dx

]1/2

= C‖u‖1,g‖v‖1,g−1 .

Lemma 5.6 Suppose α2

Θ̄
< 1. Then there is a constant C > 0, which depends

on α2

Θ̄
, such that

inf
u∈H1

g,Θ

sup
v∈H1

g−1,Θ

BΘ(u, v)
‖u‖1,g‖v‖1,g−1

≥ C > 0.
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Proof. Suppose u ∈ H1
g,Θ. We consider v = gu. Now,

BΘ(u, v) =
∫

R
[u′v′ + Θ̄uv] dx

=
∫

R
[u′(gu′ + g′u) + Θ̄gu2] dx

=
∫

R
[gu′2 + Θ̄gu2] dx +

∫

R
uu′g′ dx. (5.35)

Now, for ε > 0,

|
∫

R
uu′g′ dx| = |

∫

R
guu′(

g′

g
) dx|

≤ α

∫

R
|g1/2ug1/2u′| dx

≤ α[ε
∫

R
gu′2 dx +

1
ε

∫

R
gu2 dx],

and, therefore from (5.35), we get

BΘ(u, v) ≥
∫

R
(gu′2 + Θ̄gu2) dx− α[ε

∫

R
gu′2 dx +

1
ε

∫

R
gu2 dx]

= (1− αε)
∫

R
gu′2 dx + (1− α

εΘ̄
)
∫

R
Θ̄gu2 dx. (5.36)

We choose ε such that αε < 1 and α
εΘ̄

< 1, and therefore from (5.36), we have

BΘ(u, v) ≥ C1‖u‖21,g, (5.37)

where
C1 = min[(1− αε), (1− α

εΘ̄
)] > 0. (5.38)

We next show that ‖v‖1,g−1 ≤ C2‖u‖1,g. First note that
∫

R
g−1v′2 dx =

∫

R
g−1(gu′ + g′u)2 dx

=
∫

R
gu′2 dx +

∫

R
g−1g′2u2 dx + 2

∫

R
g′uu′ dx. (5.39)

Now, ∫

R
g−1g′2u2 dx =

∫

R
g(

g′

g
)2u2 dx ≤ α2

∫

R
gu2 dx, (5.40)

and

2
∫

R
g′uu′ dx = 2

∫

R
g(

g′

g
)uu′ dx ≤ 2

∫

R
|αg1/2ug1/2u′| dx

≤
∫

R
(gu′2 + α2gu2) dx. (5.41)
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Therefore using (5.40) and (5.41) in (5.39), we get
∫

R
g−1v′2 dx ≤ 2

∫

R
gu′2 dx +

2α2

Θ̄

∫

R
Θ̄gu2 dx. (5.42)

Thus, combining

Θ̄
∫

R
g−1v2 dx = Θ̄

∫

R
g−1g2u2 dx = Θ̄

∫

R
gu2 dx

with (5.42), we get

‖v‖21,g−1 ≤ 2
∫

R
gu′2 dx + (1 +

2α2

Θ̄
)
∫

R
Θ̄gu2 dx (5.43)

Since α2

Θ̄
< 1, therefore, from (5.43) we have

‖v‖21,g−1 ≤ 3‖u‖21,g. (5.44)

Thus, v ∈ H1
g−1,Θ, and combining (5.37) and (5.44) we get

inf
u∈H1

g,Θ

sup
v∈H1

g−1,Θ

BΘ(u, v)
‖u‖1,g‖v‖1,g−1

≥ C > 0

where

C =
min[(1− αε), (1− α

εΘ̄
)]√

3
.

We now prove the inf-sup condition on Sh × Sh. In the proof, we will use
the function di(x), x ∈ Ih

k and i ∈ Ah
k to denote the following similar functions:

gi − g(x)√
gi g(x)

,
gi+ 1

2
− g(x)√

gi+ 1
2

g(x)
,

gi+ 1
2
− glk+ 1

2√
glk+ 1

2
g(x)

where lk ∈ Ah
k . It is easily seen from the definition of g(x) that

|di(x)| ≤ Cαh (5.45)

Lemma 5.7 Suppose α2

Θ̄
< C1 and αh < C2, where C1, C2 are sufficiently

small. Then there is a constant C > 0, independent of u, v, and h, but may
depend on κ and α2

Θ̄
, such that for h small enough,

inf
u∈Sh

sup
v∈Sh

BΘ(u, v)
‖u‖1,g‖v‖1,g−1

≥ C > 0. (5.46)
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Proof. Let u =
∑

i∈Z ch
i φh

i in Sh such that ‖u‖1,g ≤ ∞. Then for x ∈ Ih
k , we

have u =
∑

i∈Ah
k

ch
i φh

i . Since
∑

i∈Ah
k

φh
i
′(x) = 0 for x ∈ Ih

k , we have

u′(x) =
∑

i∈Ah
k

ch
i φh

i

′
(x) =

∑

i∈Ah
k

(ch
i − ch

lk
)φh

i

′
(x), x ∈ Ih

k ,

where lk ∈ Ah
k is a fixed integer for given k.

We now choose v =
∑

i∈Z ch
i gi+ 1

2
φh

i in Sh, and as before, for x ∈ Ih
k ,

v′(x) =
∑

i∈Ah
k

ch
i gi+ 1

2
φh

i

′
(x)

=
∑

i∈Ah
k

(ch
i gi+ 1

2
− ch

lk
glk+ 1

2
)φh

i

′
(x)

=
∑

i∈Ah
k

(ch
i − ch

lk
)gi+ 1

2
φh

i

′
(x) + ch

lk

∑

i∈Ah
k

(gi+ 1
2
− glk+ 1

2
)φh

i

′
(x).

Now, ∫

R
u′v′ dx =

∫

R
gu′2 dx +

∫

R
u′(v′ − gu′) dx. (5.47)

For ε > 0, we have
∣∣∣∣
∫

R
u′(v′ − gu′) dx

∣∣∣∣ =
∣∣∣∣
∫

R
g1/2u′

(v′ − gu′)
g1/2

dx

∣∣∣∣

≤ ε

∫

R
gu′2 dx +

1
ε

∫

R

(v′ − gu′)2

g
dx. (5.48)

Now, from the definition of v′ and u′,
∫

Ih
k

1
g
(v′ − gu′)2 dx =

∫

Ih
k

[
∑

i∈Ah
k

(ch
i − ch

lk
)
gi+ 1

2
− g

g1/2
φh

i

′

+ch
lk

∑

i∈Ah
k

gi+ 1
2
− glk+ 1

2

g1/2
φh

i

′
]2 dx

≤ C

∫

Ih
k

[
∑

i∈Ah
k

(ch
i − ch

lk
)
gi+ 1

2
− g

g1/2
φh

i

′
]2 dx

+C

∫

Ih
k

(ch
lk

)2
∑

i∈Ah
k

gi+ 1
2
− glk+ 1

2

g1/2
φh

i

′
]2 dx. (5.49)

The first term of the RHS of the above inequality, employing (5.45) and (5.20),
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gives
∫

Ih
k

[
∑

i∈Ah
k

(ch
i − ch

lk
)
gi+ 1

2
− g

g1/2
φh

i

′
]2 dx

=
∫

Ih
k

[
∑

i∈Ah
k

(ch
i − ch

lk
)(gi+ 1

2
)1/2

gi+ 1
2
− g

(gi+ 1
2
)1/2g1/2

φh
i

′
]2 dx

≤ C

∫

Ih
k

∑

i∈Ah
k

(ch
i − ch

lk
)2gi+ 1

2
d2

i (φ
h
i

′
)2 dx

≤ Cα2h2
∑

i∈Ah
k

(ch
i − ch

lk
)2gi+ 1

2

∫

Ih
k

(φh
i

′
)2 dx

≤ Cα2h2 1
h

∑

i∈Ah
k

(ch
i − ch

lk
)2gi+ 1

2

≤ Cα2h2 1
h

∑

i,(i+1)∈Ah
k

(ch
i+1 − ch

i )2gi+ 1
2
, (5.50)

where C is independent of α, h, but depends on κ.
The second term of the RHS of (5.49), employing (5.45), gives

(ch
lk

)2
∫

Ih
k

[
∑

i∈Ah
k

gi+ 1
2
− glk+ 1

2

g1/2
φh

i

′
]2 dx

= (ch
lk

)2glk+ 1
2

∫

Ih
k

[
∑

i∈Ah
k

gi+ 1
2
− glk+ 1

2

(glk+ 1
2
)1/2g1/2

φh
i

′
]2 dx

≤ C(ch
lk

)2glk+ 1
2

∑

i∈Ah
k

∫

Ih
k

d2
i (φ

h
i

′
)2 dx

≤ Cα2h(ch
lk

)2glk , (5.51)

where C depends on κ, but is independent of α, h. Therefore, from (5.49),
(5.50), and (5.51) we have

∫

Ih
k

1
g
(v′ − gu′)2 dx ≤ Cα2h2 1

h

∑

i,(i+1)∈Ah
k

(ch
i+1 − ch

i )2gi+ 1
2

+Cα2h(ch
lk

)2glk .

Now summing the above inequality over k ∈ Z, and using (5.27) and (5.28), we
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get
∫

R

1
g
(v′ − gu′)2 dx =

∑

k∈Z

∫

Ih
k

1
g
(v′ − gu′)2 dx

≤ Cα2h2 1
h

∑

k∈Z

∑

i,(i+1)∈Ah
k

(ch
i+1 − ch

i )2gi+ 1
2

+Cα2h
∑

k∈Z

∑

i∈Ah
k

(ch
i )2gi

≤ Cα2h2 1
h

∑

i∈Z
(ch

i+1 − ch
i )2gi+ 1

2

+Cα2
∑

k∈Z

∫

Ih
k

gu2 dx

≤ Cα2h2

∫

R
gu′2 dx + Cα2

∫

R
gu2 dx. (5.52)

Then from (5.48) and (5.52) we have
∫

R
u′(v′ − gu′) dx ≤ ε

∫

R
gu′2 dx

+
1
ε
[Cα2h2

∫

R
gu′2 dx + Cα2

∫

R
gu2 dx]

= (ε +
Cα2h2

ε
)
∫

R
gu′2 dx +

Cα2

εΘ̄

∫

R
Θ̄gu2 dx. (5.53)

We next consider

Θ̄
∫

R
uv dx = Θ̄

∫

R
gu2 dx + Θ̄

∫

R
u(v − gu) dx. (5.54)

For ε1 > 0, we have
∣∣∣∣
∫

R
u(v − gu) dx

∣∣∣∣ =
∣∣∣∣
∫

R
g1/2u

v − gu

g1/2
dx

∣∣∣∣

≤ ε1

∫

R
gu2 dx +

1
ε1

∫

R

(v − gu)2

g
dx. (5.55)
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Now,
∫

Ih
k

(v − gu)2

g
dx =

∫

Ih
k

1
g
[
∑

i∈Ah
k

ch
i (gi − g)φh

i ]2 dx

=
∫

Ih
k

[
∑

i∈Ah
k

ch
i gi

1/2 (gi − g)
gi

1/2g1/2
φh

i ]2 dx

≤ C

∫

Ih
k

∑

i∈Ah
k

(ch
i )2gid

2
i φ

h
i

2
dx

≤ Cα2h2h
∑

i∈Ah
k

(ch
i )2gi.

Therefore using (5.27), we get
∫

R

(v − gu)2

g
dx =

∑

k∈Z

∫

Ih
k

(v − gu)2

g
dx

≤
∑

k∈Z
Cα2h2h

∑

i∈Ah
k

(ch
i )2gi

≤ Cα2h2

∫

R
gu2 dx. (5.56)

Thus from (5.55), (5.56), we have

Θ̄|
∫

R
u(v − gu) dx| ≤ (ε1 +

Cα2h2

ε1
)
∫

R
Θ̄gu2 dx, (5.57)

and combining (5.47), (5.53), (5.54), and (5.57), we get

|BΘ(u, v)| ≥
∫

R
gu′2 dx + Θ̄

∫

R
gu2 dx

−|
∫

R
u′(v′ − gu′) dx| − Θ̄|

∫

R
u(v − gu) dx|

≥ (1− ε− Cα2h2

ε
)
∫

R
gu′2 dx

+(1− ε1 − Cα2h2

ε1
− Cα2

εΘ̄
)
∫

R
Θ̄gu2 dx.

Now we can choose ε and ε1, for sufficiently small h, such that

|BΘ(u, v)| ≥ C1‖u‖21,g, (5.58)

where C1 > 0, since α2

Θ̄
<< 1, αh << 1 by assumption.
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We now show that ‖v‖1,g−1 ≤ C‖u‖1,g. From the definition of v′, we have
∫

Ih
k

g−1v′2 dx =
∫

Ih
k

g−1[
∑

i∈Ah
k

(ch
i − ch

lk
)gi+ 1

2
φh

i

′

+clk

∑

i∈Ah
k

(gi+ 1
2
− glk+ 1

2
)φh

i

′
]2 dx

≤
∫

Ih
k

[
∑

i∈Ah
k

(ch
i − ch

lk
)
gi+ 1

2

g1/2
φh

i

′
]2 dx

+c2
lk

∫

Ih
k

[
∑

i∈Ah
k

(gi+ 1
2
− glk+ 1

2
)

g1/2
φh

i

′
]2 dx. (5.59)

Now,
∫

Ih
k

[
∑

i∈Ah
k

(ch
i − ch

lk
)
gi+ 1

2

g1/2
φh

i

′
]2 dx

=
∫

Ih
k

[
∑

i∈Ah
k

(ch
i − ch

lk
)g1/2φh

i

′
+

∑

i∈Ah
k

(ch
i − ch

lk
)g1/2

i+ 1
2


gi+ 1

2
− g

g
1/2

i+ 1
2
g1/2


 φh

i

′
]2 dx

≤ C

∫

Ih
k

g[
∑

i∈Ah
k

(ch
i − ch

lk
)φh

i

′
]2 dx + C

∫

Ih
k

∑

i∈Ah
k

(ch
i − ch

lk
)2gi+ 1

2
d2

i (φ
h
i

′
)2 dx

≤ C

∫

Ih
k

gu′2 dx + C

∫

Ih
k

∑

i∈Ah
k

(ch
i − ch

lk
)2gi+ 1

2
d2

i (φ
h
i

′
)2 dx. (5.60)

Also using (5.45) and (5.20), we have
∑

i∈Ah
k

(ch
i − ch

lk
)2gi+ 1

2

∫

Ih
k

d2
i (φ

h
i

′
)2 dx ≤ Cα2h2 1

h

∑

i∈Ah
k

(ch
i − ch

lk
)2gi+ 1

2

≤ Cα2h2 1
h

∑

i,i+1∈Ah
k

(ch
i+1 − ch

i )2gi+ 1
2
. (5.61)

Therefore, using (5.60), (5.61) and (5.51) in (5.59), we get
∫

Ih
k

g−1v′2 dx

≤ C

∫

Ih
k

gu′2 dx + Cα2h(ch
lk

)2glk + Cα2h2 1
h

∑

i,i+1∈Ah
k

(ch
i+1 − ch

i )2gi+ 1
2

≤ C

∫

Ih
k

gu′2 dx + Cα2h
∑

i∈Ah
k

(ch
i )2gi + Cα2h2 1

h

∑

i,i+1∈Ah
k

(ch
i+1 − ch

i )2gi+ 1
2

≤ C

∫

Ih
k

gu′2 dx + Cα2

∫

Ih
k

gu2 dx + Cα2h2 1
h

∑

i,i+1∈Ah
k

(ch
i+1 − ch

i )2gi+ 1
2
.
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Now, summing the above inequality for all k and using (5.20), we get
∫

R
g−1v′2 dx ≤ C(1 + α2h2)

∫

R
gu′2 dx + Cα2

∫

R
gu2 dx. (5.62)

Again,
∫

R
g−1v2 dx =

∫

R
g−1(

∑

i∈Z
ch
i giφ

h
i )2 dx =

∫

R
(
∑

i∈Z
ch
i

gi

g1/2
φh

i )2 dx. (5.63)

Now using (5.45), we get
∫

Ih
k

(
∑

i∈Ah
k

ch
i

gi

g1/2
φh

i )2 dx

=
∫

Ih
k

[
∑

i∈Ah
k

ch
i g1/2φh

i +
∑

i∈Ah
k

ch
i

gi − g

g1/2
φh

i ]2 dx

≤ C

∫

Ih
k

(
∑

i∈Ah
k

ch
i g1/2φh

i )2 dx + C

∫

Ih
k

∑

i∈Ah
k

(ch
i )2gi

(
gi − g

g1/2g
1/2
i

)2

φh
i

2
dx

≤ C

∫

Ih
k

gu2 dx + C
∑

i∈Ah
k

(ch
i )2gi

∫

Ih
k

d2
i φ

h
i

2
dx

≤ C

∫

Ih
k

gu2 dx + Cα2h2h
∑

i∈Ah
k

(ch
i )2gi

≤ C

∫

Ih
k

gu2 dx + Cα2h2C

∫

Ih
k

gu2 dx

≤ C(1 + α2h2)
∫

Ih
k

gu2 dx,

and therefore, from (5.63) and the above inequality,
∫

R
g−1v2 dx ≤ C

∑

k∈Z

∫

Ih
k

(
∑

i∈Ah
k

ch
i

gi

g1/2
φh

i )2 dx

≤ C(1 + α2h2)
∑

k∈Z

∫

Ih
k

gu2 dx

= C(1 + α2h2)
∫

R
gu2 dx.
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Thus combining (5.62) and above inequality, we have

‖v‖21,g−1 =
∫

R
g−1v′2 dx + Θ̄

∫

R
g−1v2 dx

≤ C(1 + α2h2)
∫

R
gu′2 dx + Cα2

∫

R
gu2 dx

+C(1 + α2h2)
∫

R
Θ̄gu2 dx

≤ C(1 + α2h2)
∫

R
gu′2 dx

+[
Cα2

Θ̄
+ C(1 + α2h2)]

∫

R
Θ̄gu2 dx

≤ C(1 + α2h2 +
α2

Θ̄
)‖u‖21,g ≤ C2‖u‖21,g. (5.64)

Finally, combining (5.58) and (5.64) we get the desired result.

Projection with respect to BΘ(u, v):

Suppose u ∈ H1
g,Θ and let PΘu be the projection of u onto Sh defined by

BΘ(PΘu, v) = BΘ(u, v), for all v ∈ Sh.

The projection PΘu exists (see [11]), and it is clear from Lemmas 5.7 and 5.5
that

‖PΘu‖1,g ≤ C sup
v∈Sh

BΘ(u, v)
‖v‖1,g−1

≤ C‖u‖1,g. (5.65)

We first note that for fixed h, α, and Θ, the polynomials belong to the space
H1

g,Θ. Moreover, for fixed h, α, and Θ, we can also show, using (5.27) and
Remark 5.6, that Ĩh(xk+1) ∈ H1

g,Θ, where Ĩh(xk+1) is the interpolant of xk+1,
as defined in (4.35).

We now present some simple facts about polynomials and periodic functions.

Lemma 5.8 Let the shape functions {φh
i }i∈Z be reproducing of order k. Then

(a) PΘxi = xi, 0 ≤ i ≤ k (5.66)
(b) PΘĨh(xk+1) = Ĩh(xk+1), (5.67)

where Ĩh(xk+1) is the interpolant of xk+1 as defined in Section 4.

The proofs of these facts are immediate.

Lemma 5.9 Suppose f ∈ H1
g,Θ is periodic, i.e., f(x + xh

k) = f(x) for all k.
Then PΘf is also periodic.

Proof. Let f̃(x) = f(x + xh
k). Then [PΘf̃ ](x) = [PΘf ](x + xh

k). Now f(x) =
f̃(x) since f is periodic, and thus from the uniqueness of the the projection PΘ,
we have [PΘf ](x + xh

k) = [PΘf ](x), i.e., PΘf is periodic.
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Remark 5.8 We note that if

v(x) =
∑

i∈Z
ch
i φh

i (x)

is a periodic function, i.e., v(x + xh
k) = v(x) for any k, then v is a constant.

This could be shown as follows: Since v(x + xh
k) = v(x), we have

v(x + xh
k) =

∑

i∈Z
ch
i φh

i (x + xh
k) =

∑

i∈Z
ch
i+kφh

i (x) =
∑

i∈Z
ch
i φh

i (x) = v(x),

which implies that
∑

i∈Z
[ch

i+k − ch
i ]φh

i (x) = 0, for all x ∈ R.

Using (5.19), we can show that {φh
i }i∈Z are linearly independent in R. Thus we

infer from above that ch
i+k = ch

i = C (constant), for all i ∈ Z. Recalling that
{φh

i }i∈Z form a partition of unity, we get v(x) = C
∑

i∈Z φh
i (x) = C.

We now define
ξΘ
k+1(x) ≡ xk+1 − PΘxk+1. (5.68)

ξΘ
k+1(x) and the next result will play a central role in the final result of this

section.

Lemma 5.10 Let ξΘ
k+1(x) be as defined in (5.68) and consider ξh

k+1(x) = xk+1−∑
i∈Z(x

h
i )k+1φh

i (x) as defined in (4.36). Then

ξΘ
k+1

′
(x) = ξh

k+1

′
(x). (5.69)

Proof. We first note, from the definition of Ĩhxk+1, that ξh
k+1(x) = xk+1 −

Ĩhxk+1. Now, using (5.67), we have

ξΘ
k+1 = xk+1 − PΘxk+1

= xk+1 − Ĩhxk+1 + Ĩhxk+1 − PΘxk+1

= ξh
k+1 − PΘ[xk+1 − Ĩhxk+1]

= ξh
k+1 − PΘ[ξh

k+1]. (5.70)

But we know from Lemma 4.1 that ξh
k+1(x) is periodic, and therefore from

Lemma 5.9 and Remark 5.8 we infer that PΘ[ξh
k+1] is a constant. Thus, from

(5.70), we get
ξΘ
k+1

′
(x) = ξh

k+1

′
(x),

which is the desired result.

Proof of Theorem 5.1:
The proof will be given in several steps.
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1. Let E be the extension operator satisfying (3.51). Then, for x ∈ BH ≡
BH(0), we have

[u0−uh](x) = [u0−PΘ(Eu0)−{Euh−PΘ(Euh)}+{PΘ(Eu0)−PΘ(Euh)}](x),

and therefore,

(u′0 − uh
′)(x) = {u0 − PΘ(Eu0)}′(x)− δ′h(x) + ρ′h(x), (5.71)

where

δh = Euh − PΘ(Euh); (5.72)
ρh = PΘ(Eu0)− PΘ(Euh). (5.73)

Since u0 = Eu0 in BH(0), from Taylor’s Theorem we have

Eu0(x) =
k∑

j=0

u
(j)
0 (0)
j!

xj +
u

(k+1)
0 (0)
(k + 1)!

xk+1 + Rk+1(Eu0)(x), (5.74)

where Rk+1(Eu0)(x) is the remainder given by

Rk+1(Eu0)(x) =
1

(k + 1)!

∫ x

0

(x− t)k+1(Eu0)(k+2)(t) dt. (5.75)

Since PΘ is a linear operator, we have

PΘ(Eu0)(x) =
k∑

j=0

u
(j)
0 (0)
j!

PΘxj +
u

(k+1)
0 (0)
(k + 1)!

PΘxk+1+PΘRk+1(Eu0)(x). (5.76)

We know from (5.66) that PΘxj = xj , 0 ≤ j ≤ k. Therefore, by first subtracting
(5.76) from (5.74), then differentiating the identity, and finally using (5.69), we
have

{Eu0 − PΘ(Eu0)}′(x)

=
u

(k+1)
0 (0)
(k + 1)!

{xk+1 − PΘxk+1}′(x) + [Rk+1(Eu0)]′(x)− [PΘRk+1(Eu0)]′(x)

=
u

(k+1)
0 (0)
(k + 1)!

ξΘ
k+1

′
(x) + [Rk+1(Eu0)]′(x)− [PΘRk+1(Eu0)]′(x)

=
u

(k+1)
0 (0)
(k + 1)!

ξh
k+1

′
(x) + [Rk+1(Eu0)]′(x)− [PΘRk+1(Eu0)]′(x). (5.77)

Thus from (5.71), (5.77), and using eh(x) ≡ [u0 − uh](x), we get for x ∈ BH ,

eh
′(x) − u

(k+1)
0 (0)
(k + 1)!

ξΘ
k+1

′
(x)

= [Rk+1(Eu0)]′(x)− [PΘRk+1(Eu0)]′(x)− δ′h + ρ′h. (5.78)
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2. From (5.75), we have

[Rk+1(Eu0)]′(x) =
1
k!

∫ x

0

(x− t)k(Eu0)(k+2)(t) dt,

and since, ‖u0‖W k+2
∞ (B2H) ≤ C, we have for x ∈ B2H ,

∫

BH

|[Rk+1(Eu0)]′|2 dx ≤
∫

B2H

g|[Rk+1(Eu0)]′|2 dx

≤ CH2k+2H|u0|2W k+2
∞ (B2H)

. (5.79)

Similarly, again from (5.75), we get
∫

BH

|Rk+1(Eu0)|2 dx ≤
∫

B2H

g|Rk+1(Eu0)|2 dx

≤ CH2k+4H|u0|2W k+2
∞ (B2H)

. (5.80)

3. It can be shown from the definition of g(x) that, for 0 ≤ j ≤ k + 1,
∫ ∞

2H

gx2j dx =
∫ ∞

2H

e−α(x−H)x2j dx ≤ Ce−αH , (5.81)

where C depends on k + 1. Now, from (5.65) we get
∫

BH

|[PΘRk+1(Eu0)]′|2 dx ≤ ‖PΘRk+1(Eu0)‖21,g ≤ C‖Rk+1(Eu0)‖21,g. (5.82)

We note that, from (5.74), we have

[Rk+1(Eu0)]′(x) = (Eu0)′(x)−
k∑

j=0

u
(j+1)
0 (0)
(j + 1)!

xj .

Therefore, using (5.81) and the fact that
∫ ∞

2H

g|(Eu0)′|2 dx ≤ e−αH

∫ ∞

2H

|(Eu0)′|2 dx ≤ e−αH |Eu0|2H1(R),

we have
∫ ∞

2H

g|[Rk+1(Eu0)]′|2 dx

≤ C

∫ ∞

2H

g|(Eu0)′|2 dx + C

k∑

j=0

(
u

(j+1)
0 (0)
(j + 1)!

)2 ∫ ∞

2H

gx2j dx

≤ Ce−αH{|Eu0|2H1(R) + C‖u0‖2W k+1
∞ (B2H)

}
≤ Ce−αH{‖u0‖2H1(Ω) + C‖u0‖2W k+2

∞ (B2H)
}, (5.83)
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where C depends on k. Similarly, we can show that
∫ −2H

−∞
g|[Rk+1(Eu0)]′|2 dx ≤ Ce−αH{‖u0‖2H1(Ω) + C‖u0‖2W k+2

∞ (B2H)
},

which, together with (5.83) imply that
∫

R−B2H

g|[Rk+1(Eu0)]′|2 dx ≤ Ce−αH{‖u0‖2H1(Ω) + C‖u0‖2W k+2
∞ (B2H)

}. (5.84)

Using similar arguments, we can show that
∫

R−B2H

g|Rk+1(Eu0)|2 dx ≤ Ce−αH{‖u0‖2L2(Ω) + C‖u0‖2W k+2
∞ (B2H)

}. (5.85)

Now combining (5.79), (5.80), (5.82), (5.84), and (5.85) we get
∫

BH

|[PΘRk+1(Eu0)]′|2 dx

≤ C‖Rk+1(Eu0)‖21,g

= C

∫

R
g|[Rk+1(Eu0)]′|2 dx + CΘ̄

∫

R
g|Rk+1(Eu0)|2 dx

≤ C(1 + Θ̄H2)H2k+2H|u0|2W k+2
∞ (B2H)

+C(1 + Θ̄)e−αH{‖u0‖2H1(Ω) + C‖u0‖2W k+2
∞ (B2H)

}. (5.86)

4. We first note from (5.72), that
∫

BH

δ′h
2
dx ≤ ‖δh‖21,g = ‖Euh − PΘ(Euh)‖21,g. (5.87)

Let PΘ(Euh) = Ĩ∗hEuh + E . Then E ∈ Sh. Now from Lemma 5.5 and the
definition of PΘ, we have for all v ∈ Sh,

BΘ(E , v) = BΘ(PΘ(Euh)− Ĩ∗hEuh, v)
= BΘ(Euh − Ĩ∗hEuh, v)
≤ C‖Euh − Ĩ∗hEuh‖1,g‖v‖1,g−1 ,

and hence from Lemma 5.6, we get

‖E‖1,g ≤ C sup
v∈Sh

BΘ(E, v)
‖v‖1,g−1

≤ C‖Euh − Ĩ∗hEuh‖1,g.

Thus,

‖Euh − PΘ(Euh)‖1,g ≤ ‖Euh − Ĩ∗hEuh‖1,g + ‖E‖1,g

≤ C‖Euh − Ĩ∗hEuh‖1,g. (5.88)
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We now estimate the RHS of the above inequality. We first note that Euh(x) =
uh(x) for x ∈ Ω. Consider Ω ⊂ Ω such that (see Remark 5.4)

B2H ⊂ Ω and Ĩ∗hEuh|Ω = Euh|Ω = uh|Ω.

Therefore, from Lemma 5.2 and using (5.5),
∫

R
g[(Euh − Ĩ∗hEuh)′]2 dx =

∫

R−Ω

g[(Euh − Ĩ∗hEuh)′]2 dx

≤ e−αH [|Euh|2H1(R) + |Ĩ∗hEuh|2H1(R)]

≤ Ce−αH [|Euh|2H1(R) +
1
h2
‖Euh‖2L2(R)]

≤ C

h2
e−αH‖uh‖2H1(Ω)

≤ C

h2
e−αH‖u0‖2H1(Ω). (5.89)

Similarly, we can show using Remark 5.5 that
∫

R
g[Euh − Ĩ∗hEuh]2 dx ≤ Ce−αH‖u0‖2L2(Ω),

and thus combining it with (5.89), we get

‖Euh − Ĩ∗hEuh‖21,g ≤
CΘ̄
h2

e−αH‖u0‖2H1(Ω).

Now from (5.87), (5.88), and above, we get
∫

BH

δ′h
2
dx ≤ CΘ̄

h2
e−αH‖u0‖2H1(Ω). (5.90)

5. We first note from (5.73) that
∫

BH(0)

ρ′h
2
dx ≤ ‖ρh‖21,g = ‖PΘ(Eu0)− PΘ(Euh)‖21,g. (5.91)

Now using (5.4), we have for all v ∈ Sh,

BΘ(ρh, v)
= BΘ(PΘEu0 − PΘEuh, v)
= BΘ(Eu0 − Euh, v)
= BΩ(Eu0 − Euh, v) + BR−Ω(Eu0 − Euh, v) + ΘDR(Eu0 − Euh, v)
= BΩ(u0 − uh, v) + BR−Ω(Eu0 − Euh, v) + ΘDR(Eu0 − Euh, v)
= BR−Ω(Eu0 − Euh, v) + ΘDR−Ω(Eu0 − Euh, v) + ΘDΩ(Eu0 − Euh, v)
= BR−Ω

Θ (Eu0 − Euh, v) + ΘDΩ(u0 − uh, v). (5.92)
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Also, for v ∈ Sh,

BR−Ω
Θ (Eu0 − Euh, v)

=
∫

R−Ω

[(Eu0 − Euh)′v′ + Θ̄(Eu0 − Euh)v] dx

≤ C|‖Eu0 − Euh‖|1,g,R−Ω |‖v‖|1,g−1,R−Ω

≤ C|‖Eu0 − Euh‖|1,g,R−Ω ‖v‖1,g−1 , (5.93)

where

|‖v‖|21,g−1,R−Ω =
∫

R−Ω

g−1v′2 dx + Θ̄
∫

R−Ω

g−1v2 dx;

|‖Eu0 − Euh‖|21,g,R−Ω =
∫

R−Ω

g(Eu0 − Euh)′2 dx

+Θ̄
∫

R−Ω

g(Eu0 − Euh)2 dx.

From the definition of g(x), we can show that

|‖Eu0 − Euh‖|21,g,R−Ω ≤ e−αHΘ̄‖Eu0 − Euh‖2H1(R−Ω)

≤ Ce−αHΘ̄‖u0 − uh‖2H1(Ω)

≤ Ce−αHΘ̄‖u0‖2H1(Ω). (5.94)

Now using the definition of g(x) and (5.6) with R = 2H, we get
∫

Ω

g(u0 − uh)2 dx =
∫

B2H

g(u0 − uh)2 dx +
∫

Ω−B2H

g(u0 − uh)2 dx

≤ ‖u0 − uh‖2L2(B2H) + e−αH‖u0 − uh‖2L2(Ω)

≤ Ch2k+2H‖u0‖2Hk+1(Ω) + e−αH‖u0‖2H1(Ω),

and therefore,

Θ
‖v‖1,g−1

DΩ(u0 − uh, v)

=
Θ

‖v‖1,g−1

∫

Ω

(u0 − uh)v dx

≤ Θ
‖v‖1,g−1

(∫

Ω

g(u0 − uh)2 dx

)1/2 (∫

Ω

g−1v2 dx

)1/2

≤ Θ
1
2 Chk+1H

1
2 ‖u0‖Hk+1(Ω) + Θ

1
2 e−αH/2‖u0‖H1(Ω). (5.95)

Now, from the inf-sup condition (5.46) and using (5.92) and (5.93), we have

‖ρh‖1,g ≤ C sup
v∈Sh

BΘ(ρh, v)
‖v‖1,g−1

≤ C|‖Eu0 − Euh‖|1,g,R−Ω + sup
v∈Sh

Θ
‖v‖1,g−1

DΩ(u0 − uh, v),
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and thus, using (5.91), (5.94) and (5.95), we have
∫

BH

ρ′h
2
dx ≤ ‖ρh‖21,g

≤ Ce−αHΘ̄‖u0‖2H1(Ω) + CΘh2k+2H‖u0‖2Hk+1(Ω). (5.96)

6. We first note from (5.69) that ξΘ
k+1

′(x) = ξh
k+1

′(x) where ξh
k+1 is defined

in (4.36). Let T (u0) ≡ u
(k+1)
0 (0)
(k+1)! . Then from (5.78), we have

eh
′(x)− T (u0)ξh

k+1

′
(x)

= [Rk+1(Eu0)]′(x)− [PΘRk+1(Eu0)]′(x)− δ′h + ρ′h,

and therefore, from (5.79), (5.86), (5.90), and (5.96), we have
∫

BH

(
eh
′ − T (u0)ξh

k+1

′)2

dx

≤ C

∫

BH

|[Rk+1(Eu0)]′|2 dx + C

∫

BH

|[PΘRk+1(Eu0)]′|2 dx

+C

∫

BH

δ′h
2
dx + C

∫

BH

ρ2
h dx

≤ CH2k+2H|u0|2W k+2
∞ (B2H)

+ C(1 + Θ̄H2)H2k+2H|u0|2W k+2
∞ (B2H)

+C(1 + Θ̄)e−αH{‖u0‖2H1(Ω) + C‖u0‖2W k+2
∞ (B2H)

}+
CΘ̄
h2

e−αH‖u0‖2H1(Ω)

+Ce−αHΘ̄‖u0‖2H1(Ω) + CΘh2k+2H‖u0‖2Hk+1(Ω)

≤ C
[
H2k+2H + (1 + Θ̄H2)H2k+2H + (1 + Θ̄)e−αH

+
Θ̄
h2

e−αH + Θh2k+2H
]
M(u0), (5.97)

where
M(u0) = ‖u0‖2Hk+1(Ω) + ‖u0‖2W k+2

∞ (B2H)

We will now choose α, Θ, and H, where H = hγ and γ < 1. First we choose
γ such that

Hk+2 = hk+1, (5.98)

which implies that

hγ(k+2) = hk+1

or, γ(k + 2) = k + 1

or, γ =
k + 1
k + 2

< 1.

Let ε > 0, which depends on γ, be such that ε∗ ≡ 1 − γ − ε > 0. We will now
choose α such that

e−αH ≤ h2k+2h2h2γ+2εH = h2k+4+3γ+2ε. (5.99)
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This implies that
α ≥ C1(lnh−1)h−γ ,

where C1 = 2k + 4 + 3γ + 2ε. Since h−ε > ln h−1 for small h, we take

α ≡ C1h
−(γ+ε). (5.100)

We now choose
Θ̄ ≡ (C2)2h−2(γ+ε), C2 > C1. (5.101)

We note from (5.100) that αh = C1h
1−γ−ε = C1h

ε∗ < 1 for small h, and
limh→0 αh = 0. Thus αh can be made sufficiently small; this was one of the
assumptions in Lemma 5.7. Also by choosing C2 large enough in (5.101), we
can make α2

Θ̄
= (C1/C2)2 << 1, i.e., sufficiently small, which was another

assumption in Lemma 5.7. Thus the conclusion of Lemma 5.7 is true for the
choices of α and Θ̄ given in (5.100) and (5.101), respectively.

Now, for these choices of γ, α, and Θ̄, we have

Θ̄h2k+2 = Θ̄h2(γ+ε)h2kh2(1−γ−ε) = C2
2h2k+2ε∗ . (5.102)

Using (5.98) and (5.102) we have

Θ̄H2H2k+2 = Θ̄H2k+4 = Θ̄h2k+2 = C2
2h2k+2ε∗ . (5.103)

Also from (5.99), we get

Θ̄e−αH ≤ h2k+4HΘ̄h2γ+2ε ≤ C2
2h2k+2H, (5.104)

and

Θ̄
h2

e−αH ≤ h2k+2HΘ̄h2γ+2ε = C2
2h2k+2H. (5.105)

Thus, using (5.98),(5.102)–(5.105) in (5.97), we get

‖eh
′ − T (u0)ξh

k+1

′‖L2(BH) ≤ Chk+ε∗H1/2M(u0)
1
2 , (5.106)

and hence using (5.7) with ρ = H, we have

‖eh
′ − T (u0)ξh

k+1

′‖L2(BH)

‖eh
′‖L2(BH)

≤ Chε∗

where M(u0)
1
2 /‖u0‖Hk+1(Ω) ≤ C, which is the desired result.

Remark 5.9 The balancing of various terms in item no. 6 of the proof of The-
orem 5.1 is similar to balancing used in the superconvergence of FEM solution
(see [19].
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Remark 5.10 Assuming that our superconvergence result is valid in L∞, i.e.,
assuming that for x ∈ BH , there exists ε∗ > 0, such that

e′h(x) = A(u0)hkξk+1
′(

x

h
) + O(hk+ε∗),

we see that the zeros of ξk+1
′(x

h ) are the superconvergence points. In Figure
5.1,

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

x

ξ 2′ (x
)

For RKP shape function, p=1

Conical ω(x) with l=2, R=1.8

For FE "tent" shape function

Figure 5.1: The plot of ξ2
′(y), 0 ≤ y ≤ 1 for (a) RKP shape functions,

reproducing of order k = 1, corresponding to the conical weight function

with l = 2, R = 1.8 (b) standard “tent” functions used in FEM.

we have presented the plot of ξk+1
′(y) for the RKP shape functions, reproducing

of order k = 1, with respect to the weight function w(x) given by (4.4) with l = 2
in 1-d. We have also included the plot of ξk+1

′(y), k = 1 (the dashed curve) for
the standard tent functions that are used as shape in FEM. We note that ξ2

′(y)
for the tent function has only one zero, where as ξ2

′(y) has 5 zeros. Thus the
superconvergence points, for the RKP shape function could be distributed quite
differently than the corresponding points for standard tent functions in FEM.

6 The Generalized Finite Element Method

The idea of the Generalized Finite Element Method (GFEM) was first intro-
duced in [16] to address elliptic problems with rough coefficients. This idea was
later extended, and called the Partition of Unity Method (PUM) in [17] and
[62]. In the current literature, PUM is referred to as GFEM ([82],[83]). In this
section, we will first describe the GFEM and present the relevant approxima-
tion results. We will then discuss the selection of an optimal or near optimal
approximating space, to be used in the GFEM, in certain situations.
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6.1 Description of GFEM and Related Approximation
Results

In this section we will discuss the GFEM in the context of general particle-shape
function systems, which were discussed in Section 3.3. Suppose u0 is the solution
of our model problem (2.1), (2.2) (or (2.3)). We consider a family {Mν}ν∈N of
particle shape function systems satisfying assumptions A1–A7 with k = 0 and
Aν

x = I; assumption A5 then reads
∑

x∈Xν

φν
x(x) = 1, for all x ∈ Rn. (6.1)

The partition of unity (6.1) is the starting point of GFEM. We will need addi-
tional assumptions on {Mν}ν∈N , namely,

‖φν
x‖L∞(Rn) ≤ C1 (6.2)

and
‖∇φν

x‖L∞(Rn) ≤
C2

diam(ην
x)

, (6.3)

for all x ∈ Xν , and all ν ∈ N . In (6.3), we implicitly assume that q > n/2. We
also assume that there is a constant C such that

diam(ην
x) ≤ C, for all x ∈ Xν and for all ν.

For each x ∈ Xν , we assume that we have a finite dimensional space V ν
x

of functions that has good approximation properties. We refer to V ν
x as local

approximating spaces. We define a set of particles Aν
Ω, namely,

Aν
Ω = {x ∈ Xν : η̊ν

x ∩ Ω 6= ∅}, (6.4)

for each ν ∈ N . From (6.1) we have
∑

x∈Aν
Ω

φν
x(x) = 1, for all x ∈ Ω. (6.5)

For an approximating space on Ω, we then consider

V ν =
{
v
∣∣
Ω

: v =
∑

x∈Aν
Ω

φν
xψν

x, where ψν
x ∈ V ν

x

}
. (6.6)

The GFEM is the Galerkin method (2.7) with B̃ = B and S = V ν , and
we will denote the approximate solution uS , obtained from GFEM, by uGFEM .
When GFEM is used to approximate the solution u0 of the Neumann problem,
V ν

x can be any finite dimensional subspace of H1(η̊ν
x). But, when GFEM is used

to approximate the solution u0 of the Dirichlet problem, with the boundary
condition (2.3), the functions in V ν

x are required to satisfy v|η̊ν
x∩∂Ω = 0, for

particles x for which |̊ην
x ∩Ω| > 0. Thus the approximating space V ν ⊂ H1

0 (Ω).
Our next theorem states an approximation result for V ν . We will follow the

ideas presented in [15, 16, 17, 62, 82, 83].
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Theorem 6.1 Suppose u ∈ H1(Ω) and suppose, for all x ∈ Aν
Ω, there exists

ψν
x ∈ V ν

x such that

‖u− ψx‖L2(ην
x∩Ω) ≤ ε1(x), (6.7)

‖∇(u− ψx)‖L2(ην
x∩Ω) ≤ ε2(x). (6.8)

Then the function
uap =

∑

x∈Aν
Ω

φν
xψν

x ∈ V ν (6.9)

satisfies

‖u− uap‖L2(Ω) ≤ κ1/2C1

( ∑

x∈Aν
Ω

ε21(x)
)1/2

(6.10)

and

‖∇(u− uap)‖L2(Ω) ≤ (2κ)1/2
( ∑

x∈Aν
Ω

( C2

diam(ην
x)

)2
ε21(x) + C2

1ε22(x)
)1/2

. (6.11)

Proof. We will prove only (6.11), since (6.10) can be proved similarly.
Since φν

x, for x ∈ Aν
Ω, form a partition of unity for Ω (see (6.5)), we have

‖∇(u− uap)‖2L2(Ω)

= ‖∇
∑

x∈Aν
Ω

φν
x(u− ψx)‖2L2(Ω)

≤ 2‖
∑

x∈Aν
Ω

(u− ψx)∇φν
x‖2L2(Ω) + 2‖

∑

x∈Aν
Ω

φν
x∇(u− ψx)‖2L2(Ω). (6.12)

For any x ∈ Ω, the sums
∑

x∈Aν
Ω
(u−ψx)∇φν

x and
∑

x∈Aν
Ω

φν
x∇(u−ψx) have at

most κ non-zero terms (see Remark 3.4 and (3.61)). Therefore,

|
∑

x∈Aν
Ω

(u− ψx)∇φν
x|2 ≤ κ

∑

x∈Aν
Ω

|(u− ψx)∇φν
x|2,

and
|

∑

x∈Aν
Ω

φν
x∇(u− ψx)|2 ≤ κ

∑

x∈Aν
Ω

|φν
x∇(u− ψx)|2.

Hence, from (6.12), (6.7), (6.8), recalling that supp(φν
x) = ην

x, we have

‖∇(u− uap)‖2L2(Ω)

≤ 2κ
∑

x∈Aν
Ω

‖(u− ψx)∇φν
x‖2L2(Ω) + 2κ

∑

x∈Aν
Ω

‖φν
x∇(u− ψx)‖2L2(Ω)

= 2κ
∑

x∈Aν
Ω

‖(u− ψx)∇φν
x‖2L2(Ω∩ην

x) + 2κ
∑

x∈Aν
Ω

‖φν
x∇(u− ψx)‖2L2(Ω∩ην

x)

≤ 2κ
∑

x∈Aν
Ω

(( C2

diam(ην
x)

)2
ε21(x) + C2

1ε22(x)
)
,
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which is the desired result.

Remark 6.1 We note that ε1(x), ε2(x) in (6.7), (6.8) depend on the parameter
ν.

We will now show that both the terms of the estimate (6.11) are of the same
order with additional assumptions on V ν . These additional assumptions depend
on the boundary conditions of the approximated function.

Theorem 6.2 Suppose u0 ∈ H1(Ω) is the solution of the Neumann problem
(2.1), (2.2), and suppose there exists ψν

x ∈ V ν
x , x ∈ Aν

Ω, such that (6.7) and
(6.8) are satisfied. Moreover, assume that for x ∈ Ah

Ω, the space V ν
x contains

constant functions and that

inf
λ∈R

‖v − λ‖L2(ην
x∩Ω) ≤ C (diam(ην

x)) ‖∇v‖L2(ην
x∩Ω), for all v ∈ H1(ην

x ∩ Ω),

(6.13)
where C is independent of x ∈ Xν and ν. Then there exists ψ̃ν

x ∈ V ν
x so that

the corresponding function,

ũap =
∑

x∈Aν
Ω

φν
xψ̃ν

x ∈ V ν ,

satisfies

‖u0 − ũap‖H1(Ω) ≤ C
( ∑

x∈Ah
Ω

ε22(x)
)1/2

, (6.14)

where C is independent of u0 and ν.

Proof. Let ψν
x ∈ V ν

x , x ∈ Aν
Ω, satisfy (6.7) and (6.8). Define ψ̃ν

x = ψν
x + rν

x,
where rν

x ∈ R satisfies

‖u0 − ψ̃ν
x‖L2(ην

x∩Ω) = inf
λ∈R

‖u0 − ψν
x − λ‖L2(ην

x∩Ω). (6.15)

Since V ν
x contains constant functions, it is clear that ψ̃x ∈ Vx. Also, from (6.15),

(6.13) with v = u0 − ψν
x, and (6.8), we have

‖u− ψ̃x‖L2(ην
x∩Ω) ≤ C diam(ην

x) ‖∇(u− ψν
x)‖L2(ην

x∩Ω)

≤ C diam(ην
x) ε2(x). (6.16)

Let ũap =
∑

x∈Aν
Ω

φν
xψ̃x. Recall that φν

x, x ∈ Aν
Ω, is a partition of unity for

Ω. Then, following the arguments in the proof of Theorem 6.1 and using (3.61),
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(6.2), we can show that

‖u− ũap‖2L2(Ω) = ‖
∑

x∈Ah
Ω

φν
x(u− ψ̃x)‖2L2(Ω)

≤ κ
∑

x∈Ah
Ω

‖φν
x(u− ψ̃x)‖2L2(Ω)

= κ
∑

x∈Ah
Ω

‖φν
x(u− ψ̃x)‖2L2(Ω∩ην

x)

≤ C
∑

x∈Ah
Ω

‖(u− ψ̃x)‖2L2(Ω∩ην
x), (6.17)

and using (6.16) in this inequality, we get

‖u− ũap‖2L2(Ω) ≤ C
∑

x∈Ah
Ω

(diam(ην
x))2ε22(x). (6.18)

Again, following the arguments in the proof of Theorem (6.1), and using (6.2),
(6.3), we can show that

‖∇(u− ũap)‖2L2(Ω)

≤ 2κ
∑

x∈Aν
Ω

‖(u− ψ̃ν
x)∇φν

x‖2L2(Ω∩ην
x) + 2κ

∑

x∈Aν
Ω

‖φν
x∇(u− ψ̃ν

x)‖2L2(Ω∩ην
x)

≤ C
∑

x∈Ah
Ω

1
(diam(ην

x))2
‖u− ψ̃ν

x‖2L2(Ω∩ην
x)

+C
∑

x∈Ah
Ω

‖∇(u− ψ̃ν
x)‖2L2(Ω∩ην

x). (6.19)

By first noting that ∇(u− ψ̃ν
x) = ∇(u−ψν

x), and then using (6.16) and (6.8) in
the above inequality, we get

‖∇(u− ũap)‖2L2(Ω) ≤ C
∑

x∈Aν
Ω

ε22(x). (6.20)

Combining this with (6.18) we get (6.14), where we used that diam(ην
x) ≤ C for

all x ∈ Xν and for all ν.

Theorem 6.3 Suppose u0 ∈ H1
0 (Ω) is the solution of the Dirichlet problem

(2.1), (2.3), and suppose V ν
x , x ∈ Aν

Ω, satisfy the following assumptions:

(a) For all x ∈ Ah
Ω such that ην

x ∩ ∂Ω = ∅, V ν
x contains constant functions,

and (6.7), (6.8), and (6.13) hold.

(b) For all x ∈ Ah
Ω such that |ην

x∩∂Ω| > 0, functions v ∈ V ν
x satisfy v

∣∣
ην

x∩∂Ω
=

0, and there is a constant C, independent of x and ν, such that

‖v‖L2(ην
x∩Ω) ≤ C (diam(ην

x)) ‖∇v‖L2(ην
x∩Ω), (6.21)
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for all v ∈ H1(ην
x ∩ Ω) satisfying v = 0 on ∂Ω. Moreover (6.7) and (6.8)

hold for u satisfying u
∣∣
ην

x∩∂Ω
= 0.

Then there exists ψ̃ν
x ∈ V ν

x so that the corresponding function,

ũap =
∑

x∈Aν
Ω

φν
xψ̃ν

x ∈ V ν ,

satisfies

‖u0 − ũap‖H1(Ω) ≤ C
( ∑

x∈Ah
Ω

ε22(x)
)1/2

, (6.22)

where C is independent of u0 and ν.

Proof. We first divide the set Aν
ω into two disjoint sets, namely,

Aν
Ω,I = {x ∈ AΩ : ην

x ∩ ∂Ω = ∅}, and
Aν

Ω,B = {x ∈ AΩ : ην
x ∩ ∂Ω 6= ∅}.

Let ψν
x ∈ V ν

x , x ∈ Aν
Ω, satisfy (6.7) and (6.8). Define ψ̃ν

x, for x ∈ Aν
Ω,I ,

as in the proof of Theorem 6.2. We know from assumption (a) that, for x ∈
Aν

Ω,I , (6.13) holds and V ν
x contains constant functions. Therefore following the

argument leading to (6.16) in Theorem 6.2, we get

‖u0 − ψ̃x‖L2(ην
x∩Ω) ≤ Cdiam(ην

x) ε2(x), x ∈ Aν
Ω,I . (6.23)

For x ∈ Aν
Ω,B , we set ψ̃ν

x = ψν
x. Now, u0

∣∣
ην

x∩∂Ω
= 0 and from assumption (b),

we know that ψν
x

∣∣
ην

x∩∂Ω
= 0 for x ∈ Aν

Ω,B . Thus, using (6.21), with v = u0−ψν
x,

and (6.8), we have

‖u0 − ψ̃x‖L2(ην
x∩Ω) = ‖u− ψx‖L2(ην

x∩Ω)

≤ C diam(ην
x) ε2(x), x ∈ Aν

Ω,B . (6.24)

Following the same steps leading to (6.17) in the proof of Theorem 6.2, and
using (6.23) and (6.24), we get

‖u0 − uap‖2L2(Ω) ≤ C
∑

x∈Aν
Ω

‖u0 − ψ̃ν
x‖2L2(ην

x∩Ω)

= C
∑

x∈Aν
Ω,I

‖u0 − ψ̃ν
x‖2L2(ην

x∩Ω) + C
∑

x∈Aν
Ω,B

‖u0 − ψ̃ν
x‖2L2(ην

x∩Ω)

≤ C
∑

x∈Aν
Ω

(diam(ην
x))2ε22(x). (6.25)

Similarly, following the steps leading to (6.20) in the proof of Theorem 6.2, we
get

‖∇(u− ũap)‖2L2(Ω) ≤ C
∑

x∈Aν
Ω

ε22(x), (6.26)
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and combining this with (6.25), we get (6.22), where we used the assumption
that diam(ην

x) ≤ C for all x ∈ Xν and for all ν.

Remark 6.2 It is clear from (6.14) and (2.8) that if u0 is the solution of (2.1),
(2.2), then

‖u0 − uGFEM‖H1(Ω) ≤ C
( ∑

x∈Xν

ε22(x)
)1/2

,

provided the local approximation spaces V ν
x contain constant functions, and

(6.13) holds. The above estimate is also true if u0 is the solution of (2.1), (2.3)
provided conditions (a) and (b) of Theorem 6.3 are satisfied. We note that in the
later case, i.e., when u0 satisfies the Dirichlet boundary condition, u0|∂Ω = 0,
the space V ν

x , corresponding to a particle x such that ην
x intersects ∂Ω, does not

need to include constant functions, but the functions in V ν
x have to satisfy the

Dirichlet boundary condition on ην
x ∩ ∂Ω.

Remark 6.3 The conditions (a), (b) in Theorem 6.3, and (6.13) are known as
the uniform Poincaré property. These conditions put restrictions on the shapes
of the ην

x’s. For a detailed discussion on this property, see [17].

Remark 6.4 The constant C2 in (6.3) is related to the ratio of the radius of
the largest ball contained in ην

x to the radius of the smallest ball that contains
ην

x. A similar condition is also assumed in the classical FEM. If this ratio is
uniformly bounded for all x ∈ Aν

Ω, for all ν, then (6.13) holds.

Remark 6.5 In practical computations, one can easily construct particle-shape
function systems (with k = 0), such that conditions (6.2), (6.3), (6.13), and
conditions (a), (b) of Theorem 6.3 are satisfied.

Remark 6.6 We observed that a partition of unity is the staring point for
the construction of approximating space for GFEM. It is important to empha-
size that construction of partition unity for k = 0 is simple, e.g., it could be
constructed by Shepard’s approach as discussed in Section 4.

Remark 6.7 We have assumed that our particle-shape function system satis-
fies A1-A7 with k = 0 (i.e., it reproduces polynomials of degree 0), and have
seen that the quality of the approximation in Theorems 6.1–6.3 depends entirely
on the approximability properties of the spaces V ν

x , as quantified by ε1(x) and
ε2(x). If we used a particle-shape function system that reproduced polynomials
of degree 1 (k = 1), then the space V ν defined in 6.6 would be enlarged, and
its approximability would be improved, possibility only marginally, but this im-
provement would not be directly visible from (6.11) (or (6.14) or (6.18)). Note
that Theorems 6.1–6.3 are directed toward the use of nonpolynomial approxi-
mating functions, where the rate of convergence cannot be easily defined.

To clarify this point, suppose for φν
x we use the usual FE hat functions of

degree 1, and V ν
x is the space of constants. Then the GFEM is the classical
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FEM, with the usual rate of convergence of O(h). However, (6.11) (or (6.14) or
(6.18)) does not establish this rate. As a second example, let V ν

x be the space
of linear polynomials. Then the GFEM is a FE method, but not a usual one.
The method has the rate of convergence O(h2), but (6.11) (or (6.14) or (6.18))
only establishes O(h).

More generally, if {φν
x} reproduces polynomials of degree r, then the func-

tions φν
xψν

x, which are used in V ν , reproduce polynomials on degree k + r. This
observation allows one too establish the higher rate of convergence noted in the
previous paragraph. This will be done in a forthcoming paper.

The estimates in Theorems 6.2 and 6.3 are quite general, and allow us to
employ available information on the approximated function u. Convergence of
the approximation can be obtained by considering νi ∈ N, i = 1, 2, . . . , such
that hνi ↘ 0, where hν is defined in (3.80). This is reminiscent of the h-version
of FEM. Convergence of the approximation can also be attained by keeping ν
fixed, and selecting a sequence of spaces V ν,i

x , i = 1, 2, . . . , so that they are
complete in H1(η̊ν

x) or in a space W(η̊ν
x) ⊂ H1(η̊ν

x) that is known to include the
approximated function u0. This is a generalization of the p-version of FEM.

6.2 Selection of Vx̄ and “Handbook” Problems

We saw in Section 6.1 that it is important to select spaces V ν
x with good local

approximation properties. Principles for selecting shape functions that take ad-
vantage of available information on the approximated function were formulated
in [14, 12]. We will use these ideas to discuss the selection of the space V ν

x . In
this section we will suppress ν in our notation.

Let H1(ηx) and H2(ηx) be two Hilbert spaces, and suppose H2(ηx) ⊂ H1(ηx).
Then

dn(H2,H1) = inf
Sn⊂H1

dim Sn=n

sup
u∈H2

‖u‖H2≤1

inf
χ∈Sn

‖u− χ‖H1

is called the n-width of H2-unit ball in H1. Let V
(n)
x be an n-dimensional

subspace of H1, and let

Ψ(V (n)
x ,H2,H1) = sup

u∈H2
‖u‖H2≤1

inf
χ∈V

(n)
x

‖u− χ‖H1 .

Ψ(V (n)
x ,H2, H1) is called the sup-inf. We will write Ψ(V (n)

x ) for Ψ(V (n)
x ,H2,H1)

if there is no confusion about the spaces H1 and H2. It is clear that

dn(H2,H1) = inf
V (n)

x ⊂H1

dim V
(n)

x =n

Ψ(V (n)
x ,H2,H1).

If an n-dimensional subspace 0V
(n)
x satisfies

Ψ(0V (n)
x ,H2,H1) ≤ Cdn(H2,H1),

84



where C > 1 is a constant, independent of n, then we will refer to 0V
(n)
x as

a nearly optimal subspace relative to H1 and H2. An n-dimensional subspace
0V̄

(n)
x that satisfies

Ψ(0V̄ (n)
x ,H2,H1) = dn(H2, H1),

is referred to as optimal subspace relative to H1 and H2. An optimal subspace
0V̄

(n)
x leads to the minimal error that can be achieved with an n-dimensional

space, namely, dn(H2,H1); a nearly optimal subspace leads to essentially the
same error, dn(H2,H1).

Suppose we are interested in using the GFEM to approximate the solution
u0 of the Dirichlet problem,

{ 4u0 = 0 in Ω,

u0 = g, on ∂Ω,

where Ω is a bounded domain in R2. Then, for each x ∈ Xν , we seek a finite
dimensional space Vx that contains a good approximation ψx to u0 on ηx (cf.
(6.7), (6.8)). This will be done by taking advantage of the available information
on u0

∣∣
ηx∩Ω

, namely that u0

∣∣
ηx∩Ω

is harmonic. We now illustrate this procedure.

We now suppose that ηx is a disk in R2 and, for the sake of simplicity, suppose
ηx is the unit disk. Let H1 = {u ∈ H1(η̊x) : u is harmonic in ηx}. For the space
H2, we use W(η̊x), a (regularity) space known to contain u0. More precisely,
we suppose W(η̊x) is a linear manifold in {u ∈ H1(η̊x) : u is harmonic} and
suppose ‖|u‖| is a norm on W(η̊x) that is rotationally invariant and satisfies
‖u‖H1(η̊x) ≤ ‖|u‖|, for all u ∈ W(η̊x). Moreover, we assume W(η̊x) is complete
with respect to ‖| · ‖|, i.e., {W(η̊x), ‖| · ‖|} is a Hilbert space. We note that
W(η̊x) could be any higher order (isotropic) Sobolev space.

It is well known that any u ∈ H1 is characterized by its trace on the boundary
I = ∂ηx; these traces will be in

S = {u(θ) : 0 < θ ≤ 2π, u is 2π periodic, u ∈ H1/2(I)}.
Any u ∈ S can be expanded in its Fourier series

u(θ) = a0 +
∞∑

k=1

(ak cos kθ + bk sin kθ). (6.27)

It is immediate that

|u|2H1/2(I) = a2
0 +

∞∑

k=1

(a2
k + b2

k)k,

where |u|H1/2(I) is a Sobolev norm of order 1/2 on I. So we have a one-to-one
correspondence between u(r, θ) ∈ H1 ((r, θ) are polar coordinates) and u(θ) ∈ S,
which we express by writing u(r, θ) ∼ u(θ). We easily find that

‖u‖2H1(η̊x) = |u|2H1/2(I) = a2
0 +

∞∑

j=1

(a2
j + b2

j )j. (6.28)
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Thus we identify the space H1 with H1/2(I).
Since ‖|u‖| is rotationally invariant, the corresponding norm on u(θ) will be

translation invariant, and we thus can show that

‖|u‖|2 = a2
0 +

∞∑

j=1

(a2
j + b2

j )jβj , (6.29)

where, since ‖u‖H1(η̊x) ≤ ‖|u‖|, we have βj ≥ 1. If we now define

Hβ(I) = {u ∈ S : |u|β < ∞},

where

|u|2β = a2
0 +

∞∑

k=1

(a2
k + b2

k)kβk, (6.30)

then we see that u(r, θ) ∈ H2 if and only if u(θ) ∈ Hβ(I) and ‖|u‖| = |u|β . We
thus identify the space H2 with Hβ(I).

We will now find an optimal subspace 0V
(n)
x relative to H1 and H2. We will

exploit the correspondence u(r, θ) ∼ u(θ), and find 0V
(n)
x by first identifying an

optimal subspace relative to H̄1 = H1/2(I) and H̄2 = Hβ(I).
Let Mn = {m1,m2, . . . , mn} be a set of n positive integers, and consider

V Mn = {u ∈ H1/2(I) : u = a0 +
∑

k∈Mn

(ak cos kθ + bk sin kθ)}. (6.31)

Clearly, V Mn is a (2n + 1)-dimensional space.

Lemma 6.1 Let H̄1 = H1/2(I), H̄2 = Hβ(I), where β = (β1, β2, · · · ), βk ≥ 1,
and let V Mn be as defined in (6.31). Then

Ψ(V Mn , H̄2, H̄1) = (γ(V Mn))−
1
2 , (6.32)

where
γ(V Mn) = inf

i/∈Mn

βi.

Proof. Consider u ∈ H̄2 given by

u = a0 +
∞∑

k=1

(ak cos kθ + bk sin kθ).

Then from (6.31), we get

inf
χ∈V Mn

|u− χ|2H̄1
=

∑

k∈N−Mn

(a2
k + b2

k)k,
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where N is the set of all positive integers. Therefore from (6.30) and the defi-
nition of γ(V Mn), we have

inf
χ∈V Mn

|u− χ|2
H̄1

|u|2
H̄2

=

∑
k∈N−Mn

(a2
k + b2

k)k
a2
0 +

∑
k∈N (a2

k + b2
k)kβk

≤
∑

k∈N−Mn
(a2

k + b2
k)k∑

k∈N−Mn
(a2

k + b2
k)kβk

≤ 1
γ(V Mn)

.

Thus,

sup
u∈H̄2

inf
χ∈V Mn

|u− χ|2
H̄1

|u|2
H̄2

≤ 1
γ(V Mn)

. (6.33)

Let ε > 0 be arbitrary. Then there is an m0 /∈ Mn, m0 ≥ 1, such that

βm0 ≤ γ(V Mn) + ε. (6.34)

Consider um0 = cos m0θ. Clearly, um0 /∈ V Mn , and therefore from (6.27),

inf
χ∈V Mn

|um0 − χ|2H̄1
= |um0 |2H̄1

= m0.

Also, from (6.30), we have |um0 |2H̄2
= m0βm0 . Therefore, using (6.34), we get

sup
u∈H̄2

inf
χ∈V Mn

|u− χ|2
H̄1

|u|2
H̄2

≥ inf
χ∈V Mn

|um0 − χ|2
H̄1

|um0 |2H̄2

=
1

βm0

≥ 1
γ(V Mn) + ε

.

From this estimate and (6.33), we have

1
γ(V Mn) + ε

≤ sup
u∈H̄2

inf
χ∈V Mn

|u− χ|2
H̄1

|u|2
H̄2

≤ 1
γ(V Mn)

.

Since ε is arbitrary, we get (6.32).

Lemma 6.2 Let H̄1 = H1/2(I) and H̄2 = Hβ(I), where β = (β1, β2, · · · ), βk ≥
1. Then

d2n(H2,H1) = (γ∗n)−
1
2 ,

where
γ∗n = sup

m1,m2,...,mn

inf
i/∈Mn

βi.

The proof of this theorem follows immediately from Lemma 6.1.
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Theorem 6.4 Suppose H1 = {u ∈ H1(η̊x) : u is harmonic} and H2 = W(η̊x)
with the norm ‖|u‖|β = |u|β, given in (6.30), with βj ≥ 1. Suppose in addition
that the sequence βj is non-decreasing. Then the space

0V (2n+1)
x = span{rj cos jθ, rj sin jθ}n

j=0

i.e., the span of first (2n + 1) harmonic polynomials is optimal relative to H1

and any H2 (i.e., any of the spaces H2 we are considering).

Proof. Using the correspondence u(r, θ) ∼ u(θ), we can study the optimality
of a finite dimensional subspace relative to H1 and H2, by studying the opti-
mality of a subspace relative to H̄1 and H̄2. The result follows directly from
Lemma 6.2.

Remark 6.8 Obviously the condition on β in Theorem 6.4 holds for any (iotropic)
Sobolev space.

Remark 6.9 Let us return to the solution of the Dirichelet problem mentioned
above. Suppose ηx is far from the boundary of Ω. Then on ηx, the character
of the solution u0 is approximately the same in any direction. Thus it is ap-
propriate to embed u0 in a space with a rotationally invariant norm—a usual
(isotropic) Sobolev space, e.g. And we have learned that on ηx, u0 is well
approximated by harmonic polynomials. The situation is, however, somewhat
different when ηx is near the bounday. Then u0 would be strongly influenced by
the boundary values g(x). Hence some other shape functions, constructed, e.g.,
by the Handbook approach, which themselves reflected these boundary values,
would be “best”.

Thus the optimal shape functions are the solution of the Laplace equation.
This approach could be also be used for other differential equation, e.g., −4u+
ku = 0, or when ηx ∩ Ω = B1 − B1/2 where Bρ is the ball of diameter ρ and
homogeneous normal boundary conditions are prescribed on ∂Ω.

In this section, we saw an example of choosing an optimal local approxi-
mating space Vx, which turned out to be the span of first (2n + 1) harmonic
polynomials. In other problems, different local approximating spaces, consisting
of optimal or near optimal approximating functions, are recommended. These
optimal or near optimal approximating functions are solutions of other bound-
ary value problems (posed on ηx ∩ Ω). Such locally posed problems are called
Handbook Problems, and their solutions, which may be available analytically
or computed numerically, are called Handbook Functions. This nomenclature
is reminiscent of the solved problems and their solutions (via formulae, tables
etc.) which are used in engineering ([86]). This idea is also used in commercial
codes ([86, 85]).

One of the main advantages of GFEM is that only simple meshes are used,
which need not reflect the boundary, e.g., uniform finite element meshes. Also,
in each ηx, one can use a space Vx of arbitrary dimension (depending on x). Vx
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could be space of polynomials or any other space of functions depending on the
local properties of the approximated function.

Choosing Vx to be the space of polynomials of low degree p (and using {φx}
that are reproducing of order k), we obtain the h-version of FEM. All other
classical versions of FEM—the p and h-p versions— are special cases of GFEM.
Some examples of the use of this method will be discussed in Section 9.

7 Solutions of Elliptic Boundary Value Problem

In this section, we will discuss the approximate solution of the model problem
(2.1)–(2.2) (or (2.3)), introduced in Section 2, by a meshless method. We will
address the the Neumann boundary condition (2.2) and the Dirichlet boundary
condition (2.3) separately. These problems have the variational formulation
(2.4).

For 0 < h ≤ 1, we consider a family of particle-shape function systems

{Mh}0<h≤1 = {Xh, {hh
x, ωh

x , φh
x}x∈Xh}0<h≤1,

satisfying the assumptions A1–A7 in Section 3.3 and (3.64). Recall that (3.64)
is trivially satisfied if the shape functions are reproducing of order k. The family
{Mh}0<h≤1 was introduced in Section 3.3; recall that

sup
x∈Xh

hh
x ≤ h.

We will be interested in assessing the approximation error as h ↘ 0.
Let u0 be the solution of (2.4), where Ω is a bounded domain with Lip-

schitz continuous boundary. Sometimes in this section, we will assume that
the boundary of Ω is smooth. We will use the space Vk,q

Ω,h, defined in (3.86),
to approximate u0. It was shown in Theorem 3.11 that Vk,q

Ω,h is (k + 1, q) reg-
ular. Moreover, Vk,q

Ω,h satisfies the local assumption LA. Recall that k is the
order of the quasi-reproducing shape functions considered in {Mh} and q is the
smoothness index of these shape functions. The parameters k and q are in the
assumptions A1–A7 and we assume that q ≤ k + 1. We also recall that Vk,q

Ω,h

does not involve all the particles in Xh. It only involves particles in the set

Ah
Ω = {x ∈ Xh : ηh

x ∩ Ω 6= ∅}. (7.1)

Various classes of shape functions can be used for φh
x in the system {Mh}.

In Section 4, one such class of shape functions, namely RKP shape functions,
were discussed, and references related to other classes of shape functions used
in practice were provided.

We note that it is possible to construct particle-shape function system Mh,
satisfying A1–A7, such that the set of particles Xh ⊂ Ω, and the corresponding
Vk,q

Ω,h have desired approximation properties. We do not consider such Vk,q
Ω,h in

this section, and we will further remark on this issue in the next subsection.
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Let uS = uh ∈ Vk,q
Ω,h be the approximate solution defined by (2.7) with

S = Vk,q
Ω,h. Since Vk,q

Ω,h is (k + 1, q)-regular, we note that Vk,q
Ω,h ⊂ H = H1(Ω)

provided q ≥ 1. Thus uh is the solution of




uh ∈ Vk,q
Ω,h

B̃(u0, v) =
∫

Ω

fv dx, for all v ∈ Vk,q
Ω,h,

(7.2)

where the bilinear form B̃ is either B, given in (2.5), or a perturbation of B.
Clearly, uh is the solution of a Galerkin method. This Galerkin method is
a meshless method since the construction of the test and the trial space, i.e.,
Vk,q

Ω,h, does not require a mesh. As we remarked in Section 1, avoiding mesh
generation is one of the main features and advantages of meshless methods.

In this section, we will consider uh as an approximation of u0 and primarily
study the error u0 − uh. We set some notations that will be used in this study
in the following sections. We define

Eh
x ≡ η̊h

x ∩ ∂Ω, x ∈ Ah
Ω, (7.3)

and
Ah

∂Ω = {x ∈ AΩ : Eh
x 6= ∅}. (7.4)

Thus Ah
∂Ω is the set of particles {x} such that η̊h

x has non-empty intersection
with ∂Ω.

7.1 A Meshless Method for Neumann Boundary Condi-
tion

In this section, we will address the approximation of solution u0 of (2.1) and
(2.2) by the meshless method. The analysis presented here is based on the ideas
and results in [5, 11]. Also see the references listed in these articles.

The solution u0 of (2.1), (2.2) can be variationally characterized by (2.4),
which is 




u0 ∈ H1(Ω)

B(u0, v) =
∫

Ω

fv dx, for all v ∈ H1(Ω).
(7.5)

We wish to approximate u0 by uh, the solution of (7.2) with B̃ = B. For an
error estimate, from (2.8) we have

‖u0 − uh‖H1(Ω) ≤ inf
χ∈Vk,q

Ω,h

‖u0 − χ‖H1(Ω).

Suppose u0 ∈ H l(Ω). Then, since Vk,q
Ω,h is (k + 1, q)-regular and q ≥ 1, we have

‖u0 − uh‖H1(Ω) ≤ Chµ‖u0‖Hl(Ω),

where µ = min(k, l − 1). We summarize this in the following theorem.
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Theorem 7.1 Suppose u0 ∈ H l(Ω), with l ≥ 1, is the solution of (7.5), where
∂Ω is Lipschitz. Let uh ∈ Vk,q

Ω,h, with q ≥ 1, be the approximate solution given
by (7.2) with B̃ = B. Then

‖u0 − uh‖H1(Ω) ≤ hµ‖u0‖Hl(Ω), (7.6)

where
µ = min(k, l − 1) (7.7)

We note that the computation of uh, in Theorem 7.1, depends on the defi-
nition of Vk,q

Ω,h and involves particles that are also outside Ω. In the literature,
especially in the engineering literature, (t, k∗)-regular particle spaces are con-
structed using particles inside Ω, but the support of some of the corresponding
particle shape functions could be partly outside Ω. The apparent reason for
such construction is that the approximate solution is viewed as an interpolant
with respect to data inside Ω, and hence the particles that are only inside Ω are
considered. This certainly is not necessary.

The construction of the approximation space S (in (2.7)) using particles
only inside Ω sometimes may lead to better conditioning of the underlying lin-
ear system. On the other hand, such construction is more expensive and the
approximations could show boundary layer behavior ([13]).

7.2 Meshless Methods for Dirichlet Boundary Condition

In this section, we consider the approximation of the solution u0 of the Dirichlet
boundary value problem (2.1) and (2.3) by meshless methods. The variational
characterization of u0 is given by





u0 ∈ H1
0 (Ω)

B(u0, v) =
∫

Ω

fv dx, for all v ∈ H1
0 (Ω).

(7.8)

The Galerkin method (2.7) to approximate u0 would require that the approxi-
mating space S be a subspace of H = H1

0 (Ω) and thus that the approximating
functions satisfy the essential homogeneous Dirichlet boundary condition. Un-
like shape functions used in FEM, the particle shape functions φh

x (we consider
h as the parameter), considered in Section 3.3, do not in general satisfy the so
called “Kronecker delta” property, i.e., φh

x(y) 6= δx, y, x, y ∈ Xh. This is also
true for translation invariant particle shape functions discussed in Section 3.2
(see Section 4.2). Thus it is difficult to construct a subspace S ⊂ Vk,q

Ω,h such
that S could be used in (2.7) as the approximation space and the functions in
S satisfy the Dirichlet boundary condition.

In the literature, several meshless methods have been proposed to approx-
imate the solutions of Dirichlet boundary value problems. They are meshless
methods in the sense that they use Vk,q

Ω,h as the approximating space. These
methods are:
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1. The Penalty Method
2. The Lagrange Multiplier Method
3. The Nitsche and Related Methods
4. The Collocation Method
5. Combination of meshless and finite element method
6. The characteristic function method

In this section we will describe these methods. We note that GFEM, dis-
cussed in Section 6, uses an approximating space, different from Vk,q

Ω,h, and can
also be used to approximate the solution of a Dirichlet boundary value problem.

We will assume that the boundary ∂Ω of Ω is sufficiently smooth. The
smoothness assumption on the boundary simplifies the arguments presented
here, but various results could be obtained when the boundary is not smooth.

1. The Penalty Method.

The main idea of the penalty method is to use a perturbed variational prin-
ciple. For σ > 0, we consider the bilinear form

B̃(u, v) ≡ Bσ(u, v) ≡ B(u, v) + h−σD(u, v), (7.9)

where

B(u, v) =
∫

Ω

(∇u · ∇v + uv) dx, (7.10)

D(u, v) =
∫

∂Ω

uv dx. (7.11)

We note that (7.10) is the bilinear form given in (2.5). We consider the solution
uh = uσ,h ∈ Vk,q

Ω,h of (7.2), namely

Bσ(uσ,h, v) =
∫

Ω

fv dx, for all v ∈ Vk,q
Ω,h. (7.12)

We note that uσ,h is uS , where uS is defined in (2.7). For v ∈ H1(Ω), let

Qσ(v) = B(v, v) + h−σD(v, v)− 2
∫

Ω

fv dx. (7.13)

It is well known that
Qσ(uσ,h) = min

v∈Vk,q
Ω,h

Qσ(v). (7.14)

We now present a convergence result for the penalty method.

Theorem 7.2 Suppose u0 ∈ H l(Ω) ∩H1
0 (Ω), l > 3/2, is the solution of (7.8).

Let uσ,h ∈ Vk,q
Ω,h be the solution of (7.12). Then for any 0 < ε < min(l −

3/2, 1/2), we have

‖u0 − uσ,h‖H1(Ω) ≤ C(ε)hµ‖u0‖Hl(Ω), (7.15)
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where
µ = min(k, l − 1,

σ

2
, k +

1
2
− σ

2
− ε, l − 1

2
− σ

2
− ε), (7.16)

and C(ε) depends on ε, but is independent of h and u0.

Proof. For any v ∈ H1(Ω), we define

Rσ(v) = B(u0 − v, u0 − v) + h−σD(
∂u0

∂n
hσ + v,

∂u0

∂n
hσ + v). (7.17)

Then from Green’s Theorem,

Rσ(v) = B(u0, u0) + B(v, v)− 2B(u0, v)

+hσD(
∂u0

∂n
,
∂u0

∂n
) + h−σD(v, v) + 2D(

∂u0

∂n
, v)

= B(u0, u0) + hσD(
∂u0

∂n
,
∂u0

∂n
)

+B(v, v) + h−σD(v, v)− 2
∫

Ω

fv dx

= B(u0, u0) + hσD(
∂u0

∂n
,
∂u0

∂n
) + Qσ(v), for all v ∈ H1(Ω),

where Qσ(v) is given by (7.13). Therefore,

min
v∈Vk,q

Ω,h

Rσ(v) = B(u0, u0) + hσD(
∂u0

∂n
,
∂u0

∂n
) + min

v∈Vk,q
Ω,h

Qσ(v),

and thus from (7.14) we get,

Rσ(uσ,h) = min
v∈Vk,q

Ω,h

Rσ(v).

Hence, from (7.17) and the above relation, we have

‖u0 − uσ,h‖2H1(Ω) = B(u0 − uσ,h, u0 − uσ,h)
≤ Rσ(uσ,h)

≤ Rσ(v), for all v ∈ Vk,q
Ω,h. (7.18)

Since Vk,q
Ω,h is (k + 1, q)-regular with q ≥ 1, there is gh ∈ Vk,q

Ω,h such that

‖u0 − gh‖Hs(Ω) ≤ Chµ‖u0‖Hl(Ω), (7.19)

where µ = min(k + 1 − s, l − s) and 0 ≤ s ≤ 1. Now from (7.17) with v = gh

and using Cauchy-Schwartz inequality we have

Rσ(gh) ≤ C

(
‖u0 − gh‖2H1(Ω) + hσ

∫

∂Ω

(
∂u0

∂n
)2 ds + h−σ

∫

∂Ω

g2
h ds

)
. (7.20)
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We will estimate the right hand side of the above inequality. We first note that
u0 = 0 on ∂Ω. Let 0 < ε < min(l − 3

2 , 1
2 ). Then using a trace inequality and

(7.19) with s = (1/2) + ε, we get

‖gh‖2L2(∂Ω) = ‖u0 − gh‖2L2(∂Ω) ≤ C(ε)‖u0 − gh‖2
H

1
2 +ε(Ω)

≤ C(ε)h2µ1‖u0‖2Hl(Ω), (7.21)

where µ1 = min(k + 1
2 − ε, l − 1

2 − ε). Also from a trace inequality, we have

‖∂u0

∂n
‖2L2(∂Ω) ≤ C(ε)‖u0‖2

H
3
2 +ε(Ω)

. (7.22)

Now using (7.21), (7.22), and (7.19), with s = 1, in (7.20), we get

Rσ(gh) ≤ C(ε)
(
h2 min(k,l−1) + hσ + h2µ1−σ

)
‖u0‖2Hl(Ω)

≤ C(ε)h2µ‖u0‖2Hl(Ω), (7.23)

where µ = min(k, l−1, σ
2 , k + 1

2 − σ
2 − ε, l− 1

2 − σ
2 − ε). Finally, combining (7.18)

and (7.23) we get the desired result.

Remark 7.1 If we consider Vk,q
Ω,h in Theorem 7.2 such that k + 1 ≥ l > 3/2,

then with σ = l − 1
2 − ε, it is easy to see that (7.15) holds with

µ =
1
2
(l − 1

2
− ε).

The estimate (7.15) can be improved. We present the following result, based
on the analysis in [4, 5, 6, 8], without proof.

Theorem 7.3 Suppose u0 ∈ H l(Ω)∩H1
0 (Ω) is the solution of (7.8). Let uα,h ∈

Vk,q
Ω,h be the solution of (7.12). If k + 1 ≥ l ≥ 2, then, for any ε > 0, we have

‖u0 − uα,h‖H1(Ω) ≤ C(ε)hµ−ε‖u0‖Hl(Ω), (7.24)

where C(ε) is independent of u0 and h but depends on ε, and µ is given by

µ = min
(

σ, l + σ − 2, l +
σ

2
− 3

2
,

k + 1− κ

k
(l − 1)

)
, (7.25)

where
κ = max(1,

1 + σ

2
). (7.26)

Remark 7.2 If σ ≥ 1 in Theorem 7.3, then l+σ−2 ≥ l+ σ
2 − 3

2 , and therefore
µ in (7.24) is given by

µ = min
(

σ, l +
σ

2
− 3

2
,
k + 1− κ

k
(l − 1)

)
, (7.27)

where κ is as in (7.26).
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Example: Consider l = 2 and σ = 1 in Theorem 7.3. Then from (7.26), we
have κ = 1, and (7.27) yields µ = min(1, 1, 1) = 1. This is the optimal rate of
convergence. For higher values of l and k + 1 ≥ l, there is a loss in the rate of
convergence and we get sub-optimal rate of convergence, i.e., µ < min(l− 1, k).

Thus from Theorem 7.3, we conclude the following:

• It is advantageous to use Vk,q
Ω,h with higher values of k since it leads to

higher accuracy. For example, if l = 4 and σ = 3, then κ = 2 and (7.27)
yields µ = 3(k−1

k ). Thus higher values of k will increase accuracy. But
higher values of k reduce the sparsity of the resulting linear system.

• Too small or too large value of σ may decrease the accuracy significantly.
For example if σ = 2k + 1, then κ = k + 1 and 7.27) yields µ = 0.

The use of penalty method was recently suggested in the literatue, e.g.,
[3], [57], [89], without any theoretical analysis. A concrete penalty value of σ,
unrelated to l or k, was suggested in [89] based on experience.

2. The Lagrange Multiplier Method

The theory of Lagrange multiplier method, in the context of finite element
method, was developed in [7] (see also [11]). This theory can also be extended
to meshless methods.

It is known (cf. [11]) that the effectiveness of this method depends on a
delicate relation between the approximating space St,k∗

h (Ω) and the space of
Lagrange multipliers St,k∗

h1
(∂Ω), where both St,k∗

h (Ω) and St,k∗

h1
(∂Ω) satisfy an

inverse assumption. In the context of meshless methods, we let the approxi-
mating space to be the particle space Vk,q

Ω,h. We know that Vk,q
Ω,h is (k + 1, q)-

regular, and satisfies the inverse assumption, IA, under additional hypotheses
given at the end of Section 3.3. The space of Lagrange multipliers Sk+1,q

h1
(∂Ω)

has the same (t, k∗)-regularity as the approximating space, and the functions
in Sk+1,q

h1
(∂Ω) are defined only on ∂Ω with respect to particles on ∂Ω. Thus,

∂Ω must contain enough particles. We note that the functions in Sk+1,q
h1

(∂Ω)
are not restrictions of functions in Vk,q

Ω,h on ∂Ω. Then following the analysis
in [7, 11], one can show that if the size of the supports of the basis elements
of Sk+1,q

h1
(∂Ω) is of the same order as |Eh

x |, x ∈ Ah
∂Ω (Eh

x and Ah
∂Ω defined

in (7.3) and (7.4), respectively), then the approximate solution obtained from
the Lagrange multiplier method converges. If the size of the supports of the
basis elements of Sk+1,q

h1
(∂Ω) is smaller than ηh

x , x ∈ Ah
∂Ω, then the method is

unstable. This relationship was further analyzed in [72] and [73].
The Lagrange multiplier technique leads to the optimal rate of convergence

in comparison to the penalty method, where the optimal rate of convergence is
usually not attained. But, as we mentioned before, the sufficient conditions for
convergence are quite delicate.

Recently, the Lagrange multiplier technique was applied in the context of
meshless methods without any theoretical analysis in [24], [57], [60], [67].
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3. The Nitsche and Related Methods

Because of the delicate nature of Lagrange multiplier method, there was an
interest to look for other methods to deal with the issue of the imposition of
Dirichlet boundary conditions and to avoid complications that are present in
Lagrange multiplier method. Towards this end, certain methods were proposed
in [20] and [79]. But much earlier, a similar method was proposed by Nitsche
in [70]. We will discuss the Nitsche method, following the presentation in [79].
We will still assume that ∂Ω is smooth.

To approximate the solution u0 of (7.8) by Nitche method, we consider the
particle space Vk,q

Ω,h with q ≥ 2. We also assume that

• Card (Ah
∂Ω) ≤ κ and

C1h ≤ hEh
x
≤ C2h, x ∈ Ah

∂Ω, (7.28)

where hEh
x
≡ |Eh

x |, for x ∈ Ah
∂Ω; Eh

x and Ah
∂Ω are defined in (7.3) and

(7.4), respectively.

• There is 0 < K < ∞, K = K(Xh), such that

‖ ∂v

∂n
‖− 1

2 ,h ≤ K[B(v, v)]1/2, for all v ∈ Vk,q
Ω,h, (7.29)

where B(u, v) was defined in (7.10) and

‖ ∂v

∂n
‖2− 1

2 ,h =
∑

x∈Ah
∂Ω

hEh
x
‖ ∂v

∂n
‖2H0(Eh

x ). (7.30)

We define the bilinear form B̃(u, v) = Bγ(u, v), where

Bγ(u, v) = B(u, v)−D(
∂u

∂n
, v)−D(

∂v

∂n
, u) + γ

∑

x∈Ah
∂Ω

hEh
x

−1

∫

Eh
x

uv ds,

with γ > 0; B(u, v), D(u, v) are as defined in (7.10), (7.11), respectively. The
approximate solution uh,γ ∈ Vk,q

Ω,h, obtained from the Nitche method, is given
by

Bγ(uh,γ , v) =
∫

Ω

fv dx, for all v ∈ Vk,q
Ω,h. (7.31)

For u ∈ H2(Ω), we define the norm

‖|u‖|2 = B(u, u) + ‖∂u

∂n
‖2− 1

2 ,h + ‖u‖21
2 ,h,

where

‖u‖21
2 ,h =

∑

x∈Ah
∂Ω

hEh
x

−1‖u‖2H0(Eh
x ),
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and ‖ ∂u
∂n‖2− 1

2 ,h
is given by (7.30) with v replaced by u. We first note that from

Schwartz inequality, we have

∑

x∈Ah
∂Ω

h−1
Eh

x

∫

Eh
x

uv ds ≤
∑

x∈Ah
∂Ω

(∫

Eh
x

h−1
Eh

x
u2 ds

)1/2 (∫

Eh
x

h−1
Eh

x
v2 ds

)1/2

≤ [
∑

x∈Ah
∂Ω

h−1
Eh

x
‖u‖2H0(Eh

x )]
1/2[

∑

x∈Ah
∂Ω

h−1
Eh

x
‖v‖2H0(Eh

x )]
1/2

= ‖u‖ 1
2 ,h‖v‖ 1

2 ,h. (7.32)

Also,

D(u,
∂v

∂n
) ≤

∑

x∈Ah
∂Ω

∫

Eh
x

|h−1/2

Eh
x

u h
1/2

Eh
x

∂v

∂n
| ds

≤
∑

x∈Ah
∂Ω

h
−1/2

Eh
x
‖u‖H0(Eh

x )h
1/2

Eh
x
‖ ∂v

∂n
‖H0(Eh

x )

≤ ‖u‖ 1
2 ,h‖

∂v

∂n
‖− 1

2 ,h. (7.33)

Using the same arguments used to obtain (7.33), we get

D(
∂u

∂n
, v) ≤ ‖∂u

∂n
‖− 1

2 ,h ‖v‖ 1
2 ,h. (7.34)

Now using (7.32)–(7.34), it is can be easily shown that

Bγ(u, v) ≤ (1 + γ) ‖|u‖| ‖|v‖|. (7.35)

We now show that for a proper value of γ, the bilinear form Bγ(u, v) is
coercive.

Lemma 7.1 Suppose K2 < γ, where K satisfies (7.29). Then,

Bγ(v, v) ≥ C∗1‖|v‖|2, for all v ∈ Vk,q
Ω,h, (7.36)

where C∗ = C∗(Xh) > 0.

Proof. Let v ∈ Vk,q
Ω,h and let ε > 0 arbitrary. From the definition of Bγ(u, v)

and (7.33) with u = v, we have,

Bγ(v, v) = B(v, v)− 2D(v,
∂v

∂n
) + γ‖v‖21

2 ,h

≥ B(v, v)− 2‖v‖ 1
2 ,h‖

∂v

∂n
‖− 1

2 ,h + γ‖v‖21
2 ,h

≥ B(v, v)− ε‖v‖21
2 ,h −

1
ε
‖ ∂v

∂n
‖2− 1

2 ,h + γ‖v‖21
2 ,h

= B(v, v)− 1
ε
‖ ∂v

∂n
‖2− 1

2 ,h + (γ − ε)‖v‖21
2 ,h

≥ (1− K2

ε
)B(v, v) + (γ − ε)‖v‖21

2 ,h.
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Therefore, considering ε = 1
2 (K2 + γ) in the above inequality, we get

Bγ(v, v) ≥ C1[B(v, v) + ‖v‖21
2 ,h], (7.37)

where C1 = min(γ−K2

γ+K2 , γ−K2

2 ). Now, from the definition of ‖| · ‖| and using
(7.29), we get

‖|v‖|2 ≤ B(v, v) +K2B(v, v) + ‖v‖21
2 ,h

≤ (1 +K2)[B(v, v) + ‖v‖21
2 ,h].

Thus combining the above inequality with (7.37) we get

Bγ(v, v) ≥ C∗‖|v‖|2,

where C∗ = 1
1+K2 min(γ−K2

γ+K2 , γ−K2

2 ), which is (7.36).

We now present the following result:

Theorem 7.4 Suppose u0 ∈ H l(Ω), l ≥ 2 is the solution of (7.8). Let uh,γ ∈
Vk,q

Ω,h, with q ≥ 2, be the solution of (7.31), where Vk,q
Ω,h satisfies (7.28), (7.29).

Then

‖u0 − uh,γ‖H1(Ω) ≤
C(1 + γ)
C∗(Xν)

hµ‖u0‖Hl(Ω), µ = min(k, l − 1), (7.38)

where C∗(Xν) is as in (7.36).

Proof. It is easy to see that

Bγ(u0, v) =
∫

Ω

fv dx, for all v ∈ H1(Ω),

and therefore,
Bγ(u0 − uh,γ , v) = 0, for all v ∈ Vk,q

Ω,h. (7.39)

Now for any gh ∈ Vk,q
Ω,h, using (7.36), (7.39), and (7.35) we have

‖|gh − uh,γ‖|2 ≤ 1
C∗

B̂γ(gh − ûh,γ , gh − uh,γ)

≤ 1
C∗

B̂γ(gh − u0, gh − uh,γ)

≤ (1 + γ)
C∗

‖|u0 − gh‖| ‖|gh − uh,γ‖|,

and hence

‖|gh − uh,γ‖| ≤ (1 + γ)
C∗

‖|u0 − gh‖|.
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Therefore,

‖|u0 − uh,γ‖| ≤ ‖|u0 − gh‖|+ ‖|gh − uh,γ‖|
≤ C‖|u0 − gh‖|, for all g ∈ Vk,q

Ω,h. (7.40)

Now using (7.28) and a trace inequality, we have

‖u0 − gh‖21
2 ,h =

∑

x∈Ah
∂Ω

h−1
Eh

x
‖u0 − gh‖2H0(Eh

x )

≤ Ch−1‖u0 − gh‖2H0(∂Ω)

≤ Ch−1

(
1
h
‖u0 − gh‖2H0(Ω) + h‖u0 − gh‖2H1(Ω)

)

= C
(
h−2‖u0 − gh‖2H0(Ω) + ‖u0 − gh‖2H1(Ω)

)
, (7.41)

where C depends on κ. Also using a similar argument, we have

‖∂(u0 − gh)
∂n

‖2− 1
2 ,h ≤ C

(
h2‖u0 − gh‖2H2(Ω) + ‖u0 − gh‖2H1(Ω)

)
. (7.42)

where C depends on κ. Thus from (7.41) and (7.42) we get,

‖|u0 − gh‖|2 = ‖u0 − gh‖2H1(Ω) + ‖∂(u0 − gh)
∂n

‖2− 1
2 ,h + ‖u0 − gh‖21

2 ,h

≤ Ch−2
2∑

j=0

h2j‖u0 − gh‖2Hj(Ω),

and hence from the definition of ‖| · ‖| and (7.40), we have

‖u0 − ûh,γ‖H1(Ω) ≤ ‖|u0 − ûh,γ‖|

≤ Ch−1
2∑

j=0

hj‖u0 − gh‖Hj(Ω), for all gh ∈ Vk,q
Ω,h.

(7.43)

Finally, we choose g ∈ Vk,q
Ω,h such that

‖u0 − g‖Hs(Ω) ≤ Chµ1−s‖u0‖Hl(Ω), 0 ≤ s ≤ 2,

where µ1 = min(k + 1, l). Using this in (7.43) we get the desired result.

We now discuss the situations where the assumption required to prove The-
orem 7.4 are satisfied. The major problem is to estimate K(Xh) given in (7.29).
We would like to have K(Xh) ≤ C, uniformly for all 0 < h ≤ 1. If the supports
ηh

x of the particle function φh
x are “reasonable”, e.g., circles in R2 or spheres in

R3 or similar, then it is easy to see that the necessary condition for K(Xh) ≤ C
is that, hEh

x
≥ α|ηh

x | for x ∈ Ah
∂Ω. This can be enforced by properly selecting the
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set of particles Xh. This aspect can also affect the design of adaptive meshless
(Nitsche) method. Since the estimates of these constants difficult to estimate
accurately, we may select larger value of γ in (7.31) so that the Theorem 7.4 is
valid.

The Nitsche method presented here is superior to both the penalty method
and Lagrange multiplier method. Nitsche method, in the framework of meshless
methods, was addressed in [15] and implemented in [76] and [46].

4. The Collocation Method

Collocation method, in the framework of meshless methods, was recently
proposed in [3, 89, 47]. The method consists of adding constraint equation,
at certain points of the boundary ∂Ω, to the stiffness matrix. No analysis was
presented to address the convergence of the approximate solution obtained from
this method.

5. Combination of Meshless Methods and the Finite Element
Method

This method was proposed, e.g., in [51]. The main idea in this approach
is to use classical finite elements (which could also be interpreted as particle
functions) in a neighborhood of the boundary ∂Ω, and to select other particle
functions such that their supports do not intersect ∂Ω.

6. Characteristic Function Method

The method was proposed in connection to Ritz method when the approx-
imating functions were global polynomials (see [63],[50]). If a domain Ω has a
smooth boundary ∂Ω, there exists a smooth function Φ such that

Φ(x) > 0, x ∈ Ω,

Φ(x) = 0, x ∈ ∂Ω,

and |∇Φ(x)| ≥ α > 0, x ∈ ∂Ω.

Let SΦ
h = {u : u = Φv, v ∈ Vk,q

Ω,h}. Then it is obvious that SΦ
h ⊂ H1

0 (Ω).
We approximate the solution u0 of (2.1) and (2.3) by uh ∈ SΦ

h , where uh is the
solution uS of (2.7) with S = SΦ

h .
For u0 ∈ H l(Ω) ∩ H1

0 (Ω), l ≥ 2, we define w0 = u0
Φ . Then using Hardy’s

inequality (Thm. 329 of [49]), one can show that w0 ∈ H l−1(Ω). Using this
result, we obtain the following theorem.

Theorem 7.5 Suppose u0 ∈ H l(Ω) ∩ H1
0 (Ω), and suppose l ≥ 2. Then there

exists wh ∈ Vk,q
Ω,h such that gh = Φwh satisfies

‖u0 − gh‖H1(Ω) ≤ Chµ‖u0‖Hl(Ω), µ = min(k, l − 2). (7.44)
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Proof. Recall that Vk,q
Ω,h is (k + 1, q)-regular with q ≥ 1. Then there exists

wh ∈ Vk,q
Ω,h such that

‖w0 − wh‖H1(Ω) ≤ Chµ‖w0‖Hl−1(Ω) ≤ Chµ‖u0‖Hl(Ω), (7.45)

where µ = min(k, l − 2). Now from the definition of w0, we have

u0 − Φwh = u0 − Φw0 + Φ(w0 − wh) = Φ(w0 − wh),

and hence, using (7.45), we have

‖u0 − Φwh‖H1(Ω) ≤ C‖w0 − wh‖H1(Ω) ≤ Chµ‖u0‖Hl(Ω), µ = min(k, l − 2),

which is the desired result.

Remark 7.3 It is clear from (2.8) and (7.44) that for l ≥ 2,

‖u0 − uh‖H1(Ω) ≤ Chµ‖u0‖Hl(Ω), µ = min(k, l − 2).

We further note that this order of convergence, or (7.44) in the last theorem,
cannot, in general, be improved.

7. The Generalized Finite Element Method

We note that all the methods described so far primarily use Vk,q
Ω,h as the

approximating space. The GFEM, on the other hand, uses different approxi-
mating spaces, as we have seen in Section 6. The use of these approximating
spaces makes GFEM extremely flexible.

We recall that in GFEM, we start with a partition of unity with respect
to a simple mesh that need not conform to the boundary of the domain. This
partition unity could be the particle shape functions defined in Section 3. Then
“handbook” functions are used as local approximating spaces. The Dirichlet
boundary condition can be implemented by choosing the local approximation
space Vx, for x ∈ Ah

∂Ω, such that the functions in Vx satisfy the Dirichlet bound-
ary conditions.

We presented a few approaches on how to use meshless approximation to
approximate solutions of PDE’s. To impose Dirichlet boundary conditions on
meshless approximation is a challenge, and we looked into some methods that
can overcome this difficulty. While discussing these methods, we assumed that
the boundary of the domain is smooth for simplicity. But the results presented
here can be generalized to include non-smooth boundary, especially, piecewise
smooth boundary.

Some of methods were implemented and reported in the literature, but they
lacked rigorous theoretical analysis. All the methods reported here have certain
advantages as well as disadvantages. If the particle space Vk,q

Ω,h is used as an
approximating space, in our opinion, the Nitsche method is very promising
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because it is robust relative to other methods and is easy to implement. But
we note that Vk,q

Ω,h is difficult to construct for higher values of k, and the use
of Vk,q

Ω,h with lower values of k reduces the accuracy of the method. On the
other hand, GFEM uses a partition of unity (e.g., Vk,q

Ω,h with k = 0), which is
easy to construct, and higher accuracy can be attained by using suitable local
approximation spaces.

8 Implementational Aspects of the Meshless Method

In this section, we will briefly discuss the implementational aspects of meshless
methods and the GFEM. Similar to the finite element method, the implemen-
tation of meshless methods and the GFEM has four major parts:

1. Construction of particle shape functions.

2. Construction of the stiffness matrix.

3. Solution of the linear system of equations.

4. A-posteriori error estimation, adaptivity, and computation of data of in-
terest.

We now discuss these items in turn.

1. Construction of particle shape functions

In the classical finite element method, one starts with a mesh that is related
to the domain, and then shape functions are defined with respect to the cho-
sen mesh. In a meshless method, one starts with particles {x}. Corresponding
to each particle x, a particle shape function with compact support ηx is con-
structed, such that η̊x’s form an open cover of the domain Ω. The construction
of shape functions that are reproducing of order k = 0 or 1 is not difficult.
For k = 0, one may use Shepard’s approach ([77]) as described in Section 4.1.
For k = 1 and for an appropriate particle distribution, one may first construct
a mesh using tetrahedrons such that the particles are the nodes of the mesh
(i.e., the vertices of the tetrahedrons). This procedure is not difficult as there
are efficient codes available for constructing such a mesh. The shape function
corresponding to the particle x can be taken to be the standard hat functions,
whose support is the union of all the simplices with x as one of its vertices. We
note however that, for k = 1, smoother shape functions can also be constructed
(see [48]). For k = 0, 1, one has to check that card(Sx) ≤ κ, κ is independent
of x, where Sx = {y : ηy ∩ ηx 6= ∅}. For the Nitsche Method, described in
Section 7.2, one also has to check that K, defined in (7.29), is bounded. The
construction of particle shape functions for k ≥ 2 is more expensive than for
k = 0, 1, and it may be more difficult to check assumptions A1–A7 and (3.64),
which ensure convergence.

102



In contrast, the GFEM uses only a partition of unity, and thus particle
shape functions with k = 0, 1, described in the last paragraph, can be used for
this purpose. Also, a simple regular distribution of particles could be used to
construct the partition of unity. The space of local shape functions, Vx, could
be created analytically or through “handbook” solutions. Dirichlet boundary
condition is also treated by an appropriate selection of Vx, and hence one does
not have to use special methods, e.g., the penalty method, Nitsche method, etc.,
which simplifies the implementation.

2. Construction of the stiffness matrix

The construction of the stiffness matrix for a meshless method is laborious
and delicate. In fact, this is where one pays the price for avoiding mesh gener-
ation. The elements of the resulting stiffness matrix are integrals, which have
to be numerically evaluated over various regions. These regions are not simple
tetrahedrons as in the finite element method, where they naturally come from
a mesh. These regions, for a meshless method, are of the form ηx ∩ ηy ∩ Ω,
x, y ∈ Xν , and can be extremely complicated. Also the integrals have to be
evaluated accurately as it is known that inaccurate numerical integration leads
to very poor results (see, for example, [28]). A special numerical integration
scheme is given in [30], where ηx’s are spheres and the region of integration
are the intersection of two spheres. The problem of effective integration has
also been addressed in [33, 43, 76, 82, 83]. The numerical integration poses
additional problems in GFEM when singular functions are included in the local
approximating space Vx. Standard integration schemes in this situation yield
poor accuracy. This problem in GFEM was handled in [82] by using adaptive
numerical integration. Because of this sensitivity to numerical integration, the
use of adaptive integration is preferred, in general, in GFEM.

Thus we see that an accurate and effective numerical integration scheme to
approximate the elements of the stiffness matrix is essential for the success of
meshless methods. We will further remark on this issue in the next item of this
section. We note that numerical integration and construction of stiffness matrix
in these methods are parallelizable.

3. Solution of the linear system

The exact stiffness matrix (without numerical integration) obtained from a
meshless method could be positive definite with a large condition number. This
is caused by using shape functions with large overlap between their supports,
which makes the shape functions “almost” linearly dependent. Moreover, the
exact stiffness matrix obtained from GFEM could be positive semi-definite, as
shown in [82]. But the underlying linear system obtained from the GFEM is
always consistent, i.e., the linear system has non unique solutions. The lack of
unique solvability of the linear system does not imply that the GFEM produces
non-unique solutions. In fact, if the vector {cx,j}1≤j≤nx , with dim Vx = nx, is
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a solution of this linear system, then the solution,

uh =
∑

x

nx∑

j=1

φx cx,j ψj
x,

obtained from the GFEM, where ψj
x is a basis of Vx, is unique.

We already have mentioned the importance of numerical integration in eval-
uating the elements of the stiffness matrix obtained from a meshless method.
We further note that the elements of the load vector is also evaluated by numer-
ical integration. To obtain a consistent linear system (after the use of numerical
integration), the numerical integration scheme applied to compute an element of
the load vector should be same as the scheme used to compute the corresponding
row of the stiffness matrix.

To find the solution of the linear system obtained from a meshless method
(or from the GFEM), one can use a special direct solver based on elimination or
an iterative solver. In [82], direct solvers, e.g., subroutines MA27 and MA47 of
Harwell Subroutine Library, was used to solve the sparse positive semi-definite
linear system obtained from GFEM. The use of these solvers was successful even
when the nullity of the stiffness matrix was large. It was also shown in [82] that
round-off errors did not play a significant role in solving the linear system, i.e.,
the round-off error was almost same as when the standard finite element linear
system is solved by the elimination method.

An iterative algorithm for solving such linear systems was given in [82].
The idea of this algorithm is to perturb the stiffness matrix by a unit matrix
multiplied by a small parameter. The perturbed matrix, say P , is positive
definite and any solver could be used to solve Px = b. Using this fact and a few
iterations of a simple iterative technique, a solution of the original linear system
could be obtained. We refer to [82] for a complete description effectiveness of
this iterative algorithm.

We have noted before that the linear system obtained from the meshless
method is consistent even if the stiffness matrix is positive semi-definite. In
this situation, a solver based on conjugate gradient method can also be used.
The convergence in this situation is similar to the convergence of conjugate
gradient method when applied to solve the linear system obtained from the
standard finite element method. The multigrid method is not directly applicable
to the linear system when the stiffness matrix is positive semi-definite, since the
eigenfunctions corresponding to the zero eigenvalue of the stiffness matrix is
global and oscillatory. The same is also true when the the stiffness matrix is
“almost” singular. However, a special version of multigrid method was proposed
in [76] and [44], when the underlying partition of unity was reproducing of order
k = 0.

4. A-posteriori error estimation, adaptivity, and computation of
data of interest

The rigorous theory of a-posteriori error estimation was developed in [17] and
other estimates, based on various averaging, were also used. These estimators
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can be used as error indicators for adaptivity purposes. For adaptive approaches
in meshless method, we refer the reader to [76] and [23].

We finally mention that programming the meshless method is an important
issue and it requires specific concepts. For this aspect of the meshless method,
we refer to [32, 45, 82] and [83].

9 Examples

Meshless methods have been applied to linear and non linear elliptic problems,
as well as to problems related to other differential equations; we refer to [56].
However, it is essential to characterize the types of problems where this method
is, or could be, superior to standard methods ([21]).

In this paper, we address only the application of the meshless method on
a class of linear, elliptic problems. As stated in the introduction, one of the
main advantages of meshless methods is that it avoids mesh generation. This
is essential when the domain in complex. Another advantage of this method is
that it allows the use of various “special” local shape functions to improve the
accuracy.

The Generalized Finite Element Method (GFEM) was elaborately discussed
in [83] and it was shown that the method is effective. Three types of meshes
with successive refinements were used in that paper and we present one of these
meshes in Figure 9.1. This is a simple finite element mesh and it does not reflect
the geometry of the underlying domain. Then, using the linear finite elements
as partition of unity and special functions for local approximation, an improve-
ment in the rate of convergence was achieved. Detailed numerical data, with
comments on various aspects of the method, e.g., numerical integration, etc.
were presented in [83]. We note however, that though the domain considered
in this example (i.e., the domain in Figure 9.1) was simple, and classical fi-
nite element method with mesh refinement or an adaptive procedure could have
been used, the analysis and data presented in [83] clearly shows the scope and
potential of GFEM.

Figure 9.1: A mesh used in [83] for the constructing of partition of unity

in the context of GFEM to solve a problem posed on the domain.
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As mentioned above, the power of GFEM lies in handling problems where
the underlying domain has complex geometry. Three types complex domains,
shown in Figure 9.2, were analyzed by the GFEM in [83]. Another complex
domain with fibers, analyzed in the same paper, is shown in Figure 9.3 where
the fiber distribution was taken from [10]. To construct finite element meshes
for these domains is very complex and nearly impossible. “Handbook” problems
that characterize the local behavior of the approximated solution (e.g., in the
neighborhood of a crack, fibers, etc.) were used to construct special shape
functions for these problems.
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G10
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G2

G4

G3

G8
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Figure 9.2: The three types of domains analyzed by GFEM in [83].

The GFEM has an advantage in dealing problems with singularities (in the
neighborhood of geometric edges) in 3D. When the basic finite element tetra-
hedral mesh is used in such problems, it is well known that classical edge re-
finement is cumbersome. This problem was handled using GFEM in [36], where
a refinement by special functions, at positions indicated by an error indica-
tor, was performed. GFEM was also used to handle difficulties stemming from
orthotropic problems in [35].
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Figure 9.3: The problem of fiber composite type analyzed in [83].

There are other types of problems where the GFEM is quite effective. They
include multisite problems, where many crack configuration are present, and
crack propagation problems, where the geometry of the domain changes. The
GFEM could be used in such problems by considering local approximating
spaces consisting of functions that are discontinuous over the cracks and in-
cluding a singular function with respect to the tip of the crack into the local
approximating space. Then the propagation of the crack is computed (using
stress intensity factors); the old singular function in the approximating space
is replaced by a new singular function, new discontinuous functions are added
in the same space, and the process of computing the propagation of crack and
changing the local approximation spaces is repeated. In this process, the ma-
trix of the underlying linear system at a particular step can be obtained by
augmenting the matrix corresponding to the previous step with new rows and
columns, and it is possible to solve the new linear system using Schur comple-
ment, which uses the previously computed data. This general idea was used in
[56, 64] without using the previously computed data.

The GFEM is an important tool in approximating solutions of elliptic prob-
lems with rough coefficients as well as homogenization problems. We mention
that the usual finite element method may give extremely poor result when ap-
plied to elliptic problems with rough coefficients, as shown in [18]. It was shown
in [16], using a detailed analysis, that GFEM leads to the same rate of conver-
gence for problems with rough coefficients as when the coefficients are smooth.

We emphasize that in this paper, we considered only a small (but important)
family of problems. We showed that the use of meshless methods, particularly
the use of GFEM, on these problems is advantageous in comparison to the
standard finite element method. Of course, there are other types of problems,
especially non-linear problems, which we have not addressed in this paper.

Note: The authors will like to thank Elsevier Science for allowing the use
of Figures 9.1, 9.2, and 9.3 in this paper. They were published in the journal
Computer Methods in Applied Mechanics and Engineering.

10 Some Comments and Future Challenges

In the previous sections we addressed linear elliptic equations. The approxi-
mation theory we developed is obviously usable in practically all variationally
formulated problem, provided the inf-sup condition (the BB condition) is sat-
isfied. Meshless methods and the GFEM can be directly used for higher order
equations because there are no difficulties in constructing shape functions of any
regularity. Adaptive procedures, shock capturing, etc., can be combined with
adaptive construction of shape functions. A deep theoretical understanding of
these issues is still in the future.

For non-coercive problems, the question of the inf-sup condition is more
delicate and plays an important role. Some non-coercive problems have been
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successfully treated. We mention, for example, equations whose solutions are
oscillatory, as with the Helmholtz equation. Special shape functions were used to
capture the oscillatory character of the solution; see, e.g. [52], [62]. Although
there are some problems with round-off error, it can be expected that these
difficulties can be overcome.

Meshless Methods can be applied to nonlinear as well as linear problems.
The Handbook approach for constructing shape functions is important for both
types of problems.

The Finite Element Method is presently used for solving a wide variety of
problems. Meshless methods, especially the GFEM, offer many new opportu-
nities. Since the FEM is a special case of the GFEM, the study of the GFEM
provides the potential to develop enhanced and improved methods. Under the
umbrella of GFEM, there is actually a family of particular methods—depending
on the approximating functions employed. The goal in creating new particular
GFEM is to obtain methods that are especially effective on certain classes of
problems. To address this issue meaningfully and effectively, further mathemat-
ical study of meshless methods is essential.
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